Как мы отмечали в третьей главе, электроны не похожи на планеты (равно как и на уменьшенные песчинки). Они действуют в квантовом мире, и это означает, что их поведение представляет собой сочетание тех свойств, которые мы приписываем частицам, а также тех свойств, которые мы приписываем волнам. И частицы, и волны могут передавать энергию (эту концепцию мы более подробно изучим в дальнейшем) из одного места в другое. Если я брошу вам бейсбольный мяч, а вы его поймаете, то вы почувствуете боль из-за кинетической энергии (энергии движения), которую я сообщил мячу, совершив бросок. По мере того как частица перемещается с места на место, она переносит с собой энергию. Точно так же ее переносит и волна, хотя в этом случае в движении какого-либо вещества от меня к вам нет необходимости. Если мы оба возьмемся за концы веревки, я могу резко дернуть свой конец вверх и вниз, и волна, прошедшая через веревку, передаст это движение вашей руке, в то время как частицы веревки, которые я держу в своей ладони, останутся на месте.
Рис. 4.2. На рис. а полная длина волны умещается между двумя закрепленными концами струны. На рис. б между ними умещаются две полных длины волны (обертон на октаву выше). Но на рис. в и г мы видим, что иные длины волн – слегка увеличенная и слегка укороченная – невозможны, поскольку нарушается условие, согласно которому концы струны должны оставаться неподвижными
Рамка 4.1. Уровни энергии Водорода
Длина волны частицы в квантовой механике определяется как h/mv, где m – это масса частицы, v – ее скорость, а h – постоянная Планка = 6,63 × 10–34 Дж·c.
Радиус орбиты электрона в атоме Водорода: r = 5,29 × 10–11 м
Масса электрона: m = 9,11 × 10–31 кг
Скорость электрона на орбите: v = 2,18 × 106 м/с (примерно 0,7 % скорости света)
Таким образом, длина волны электрона составляет:
6,63 × 10–34 Дж·c / (9,11 × 10–31 кг × 2,18 × 106 м/с) = = 3,3 × 10–10 м
Длина окружности орбиты электрона составляет 2π × 5,29 × 10–11 м, что в точности равняется длине волны электрона в квантовой механике – орбита определяется одной целочисленной волной, охватывающей ее пределы.
Кинетическая энергия электрона = 1/2 mv2 = 1/2 × 9,11 × × 10–31 кг × (2,18 × 106 м/с)2 = 2,16 × 10–18 Дж.
2,16 × 10–18 Дж × 1 эВ / 1,6 × 10–19 Дж = 13,6 эВ, это и есть энергия связи на энергетическом уровне с номером n = 1 для H.
Длина волны электрона на энергетическом уровне с номером n = 2 точно в два раза больше, и вследствие этого то же самое справедливо для длины окружности его орбиты, благодаря чему радиус можно выразить как 2r. Напряженность электрического поля ослабевает как 1/квадрат расстояния, так что 1/(2r)2 = ¼ от энергии связи на энергетическом уровне с номером n = 1; то есть 1/(2r)2 = = 13,6 эВ/4 = 3,4 эВ.
Это означает, что при переходе с n = 2 на n = 1 выделяется энергия, равная разнице в 10,2 эВ, что мы и наблюдаем.
Таким образом, при n = 3 => 13,6 эВ/9 = 1,51 эВ; при n = 4 => 13,6 эВ/16 = 0,85 эВ и так далее (см. рис. 4.5).
Любую волну описывают две количественные характеристики – расстояние между двумя смежными гребнями (длина) и стремительность, с которой волна движется вперед (скорость). Если закрепить концы струны, скажем, между нижним порожком гитары и вашим пальцем, прижимающим ее на определенном ладу гитарного грифа, в этот интервал смогут встроиться лишь определенные длины волн, соответствующие «ноте», которую вы решите сыграть (см. рис. 4.2). Если удвоить длину струны, вы получите ноту на октаву4 ниже, поскольку теперь в промежутке идеально умещается волна вдвое большей длины.
Если немного расширить эту аналогию, электроны могут существовать только при таком расположении внутри атома, при котором между ними и ядром оказывается целое число длин их волн (см. рамку 4.1, в которой делается расчет для атома Водорода). В итоге электроны могут находиться на орбитах на определенных расстояниях от атомного ядра. Вследствие этого основные оболочки обозначаются как n = 1 для оболочки, ближайшей к ядру, n = 2 для следующей по направлению от ядра, n = 3 для еще более далекой и так далее. Как мы увидим впоследствии, эти оболочки соотносятся со строками Периодической таблицы.