Выбрать главу

Ядерные взаимодействия, уже из названия которых следует, что они ограничены масштабами атомного ядра, безраздельно господствуют в своем «царстве» и производят энергии связи, сила которых невероятна и которые, при высвобождении, могут порождать высокоскоростные частицы или фотоны и преображать атомы того или иного рода в другой. Даже масса как таковая представляет собой форму запасенной энергии, и если она высвобождается при встрече частиц вещества и антивещества или при образовании нового атомного ядра, при этом может выделиться огромное количество энергии, что отражено в знаменитом уравнении Эйнштейна E = mc2, где m – масса, а c – скорость света. И Солнце, и атомные электростанции – это примеры преобразования массы в энергию.

Как мы отмечали в третьей главе, тепло – это тоже форма энергии, представленная движением частиц, из которых состоит вещество. Такая энергия движения как на микроскопическом (колеблющиеся атомы), так и на макроскопическом (мчащийся пассажирский поезд) уровне называется кинетической энергией и равна произведению половины массы движущегося объекта на квадрат его скорости (Ek = ½ mv2).

Рамка 4.2. Электромагнитный спектр

У электромагнитной волны энергия обратно пропорциональна длине волны (чем короче длина волны, тем быстрее колебания, и это, в свою очередь, свидетельствует о большей энергии). В частности:

E = hc/λ, где обозначено следующее:

E = энергия волнового пакета, так называемого фотона (в джоулях)

h = постоянная Планка, основная константа природы = 6,63 × 10–34 Дж·c

c = скорость света, еще одна константа, в вакууме равная 3 × 108 м/с

λ = длина волны света (расстояние между двумя соседними гребнями)

Для процессов, происходящих на атомном уровне, несколько практичнее выражать энергии не в джоулях, а в электронвольтах, эВ:

1 эВ = 1.6 × 10–19 Дж; 1 кэВ = 103 эВ; 1 МэВ = 106 эВ

Любой объект, температура которого выше абсолютного нуля, испускает электромагнитное излучение с длиной волны, обратно пропорциональной температуре. Чем выше значение T, тем быстрее движутся частицы и тем меньше, в свою очередь, длина волны λ:

λmax = 0,0029 м/T [K], где:

λmax = пик спектра, где излучается максимальное количество энергии

0,0029 м = константа, используемая для того, чтобы получить результат в метрах

T [K] = температура, измеренная в кельвинах.

Спектр (в каком-то смысле произвольно) разделен на неравные доли, которым присвоены различные имена, хотя, в сущности, это непрерывный диапазон, не ограниченный ни с какой стороны.

В то время как для измерения всех остальных физических свойств американцы (и жители Бермудских островов) используют устаревшие английские единицы (дюймы, футы, мили, фунты, кварты и так далее), для энергии даже в Америке приняли метрическую систему. Самая известная единица ее измерения – это калория, которую можно найти на этикетках, маркирующих пищевые продукты от мороженого до сырных палочек. Одна килокалория (именно в них измеряется калорийность, и исторически они назывались «большими» калориями, а в английском обозначаются с заглавной C, Calorie5) – это мера энергии, необходимой для того, чтобы повысить температуру 1 литра воды на 1 °C (как видите, везде метрическая система). Таким образом, количество килокалорий, указанное на этикетках, – это мера химической энергии, запасенной в упаковке, и как только вы переварите всю еду, заключенную в эту упаковку, энергия высвободится в форме тепла, пойдет на формирование жировых клеток и так далее.

Скорость, с которой используется энергия, называется мощностью, и привычная нам единица измерения мощности также метрическая – это ватт. 1 ватт призван обозначить энергию в 1 джоуль, использованную за 1 секунду, где джоуль (выводимый из формулы кинетической энергии, равной произведению массы на квадрат скорости) равен 1 кг м22; примерно столько энергии тратит килограммовая курица на спокойное перемещение. В одной килокалории 4184 Дж (этот странный коэффициент появился в результате того, что калориям давали самые разные определения – сложно усмотреть очевидную равноценность, сравнивая нагрев воды и куриную прогулку).