Большая часть килокалорий, потребляемых вами, идет на то, чтобы повысить вашу температуру, подняв ее с той, которая характерна для окружающего пространства (примерно 20 °C), до той, при которой ваше тело работает наилучшим образом (37 °C). Поскольку ваше тело по большей части состоит из воды, то легко рассчитать, что при массе, скажем, в 65 кг для достижения этой цели – иными словами, для увеличения температуры на 37° – 20° = 17 °C – потребуется 1100 ккал. И вдруг оказывается, что в пинте мороженого «Бен и Джерри» как раз 1100 ккал (это указано прямо на этикетке). Так что же, выходит, вам нужно просто съесть пинту «Бен и Джерри», и все будет хорошо?
Это было бы правдой, если бы вы не теряли энергию на обмен с окружающей средой, а также если бы она не требовалась вашему сердцу, чтобы прокачивать кровь по телу, и если бы ваши нейроны не пребывали в крайнем возбуждении по мере того, как вы читаете эти строки. На самом деле для того, чтобы сохранять температуру вашего тела в ее оптимальном рабочем диапазоне при условии постоянного излучения энергии, и для того, чтобы поддерживать все остальные функции вашего тела, вы используете энергию примерно с той же скоростью, с какой ее использует 100-ваттная электрическая лампочка: 100 джоулей в секунду. Это означает, что ваша общая потребность в энергии за день составляет 100 Дж/с × 60 сек/мин × × 60 мин/ч × 24 часа/день = 8 640 000 Дж. Если мы переведем это в килокалории, то получим 8 640 000 Дж × 1 ккал/4184 Дж = = 2065 ккал в день, – примерно столько вы и получаете при стандартной диете.
Энергия, которая поддерживает в вас жизнь, прошла долгий и богатый событиями путь. Изначально, сотни тысяч лет назад, она была испущена в ходе ядерной реакции, происходившей в недрах Солнца, тысячи лет блуждала в его глубинах, потом вырвалась на свободу с его поверхности, в виде света помчалась к Земле, достигла ее меньше чем за восемь минут, потом ее впитал лист растения, чтобы запустить фотосинтез и сформировать химические связи, потом этот лист склевала курица и энергия, заключенная в нем, преобразилась в мясистое крылышко, а это крылышко, в свою очередь, съели вы, и у вас в животе химические связи вновь перестроились, породив согревшее вас тепло – иными словами, формы энергии, от ядерной и электромагнитной до химической и кинетической, выглядят совершенно по-разному, но ее величина остается неизменной.
Энергия связи электрона
Теперь, когда мы уплели пинту «Бена и Джерри» и поняли, что такое энергия, мы можем вернуться к электронам, движущимся в атомах по четко заданным образцам, и посмотреть, как они взаимодействуют со светом, с соударяющимися частицами и с соседними атомами, с которыми они, с той или иной степенью вероятности, могли бы объединиться и образовать молекулы.
Каждая из электронных оболочек и подоболочек, о которых мы говорили выше, соотносится с определенным количеством «энергии связи». Поскольку сила электрического притяжения ослабевает с увеличением расстояния, электроны, расположенные ближе всего к ядру, связаны наиболее прочно. Мы исчисляем эти взаимодействия, определяя энергию связи как равную той энергии, которая потребовалась бы, чтобы полностью освободить электрон из атома; такой процесс называется «ионизацией», а атом, который в результате получает заряд, – «ионом». Поскольку есть все логические основания назвать электрон с нулевой энергией связи свободным (он ведь не давал клятву верности своему бывшему спутнику-ядру), мы характеризуем энергии связи как отрицательные; иными словами, нам, чтобы получить ноль, нужно прибавить энергию к отрицательной величине.
Схема энергетических уровней Водорода показана на рисунке 4.5. Электрон в 1s-состоянии обладает энергией связи –13,6 эВ (см. рамку 4.1), где эВ обозначает «электронвольт»; 1 эВ – это крошечное количество энергии, подходящее для разговора об отдельных атомах и их составляющих, и он равен 1,6 × 10–19 Дж. Если бы я сообщил этому электрону Водорода +13,6 эВ, он стал бы свободным (ионизированным). Если бы я сообщил ему +14 эВ, то он бы сперва использовал первые +13,6 эВ, чтобы освободиться, а потом ускользнул бы с кинетической энергией 0,4 эВ. Если бы я сообщил ему 25 эВ, он бы умчался прочь со скоростью 2000 км/с и через секунду прибыл бы из Нью-Йорка в Миннеаполис.
Энергию к беспокойному электрону можно передать двумя способами. Если достаточно близко промчится фотон с энергией, равной 14 эВ, электрон может захватить его, уничтожить и преобразовать его электромагнитную энергию в кинетическую, необходимую для высвобождения. Есть и альтернатива: с атомом может столкнуться другой атом, молекула или субатомная частица, скажем, еще один электрон; опять же, если его кинетическая энергия больше чем 13,6 эВ, электрон может высвободиться.