Выбрать главу

Любой фотон или соударяющаяся частица, энергия которой не доходит до 13,6 эВ, вероятнее всего, просто пройдет мимо атома или отскочит, ничего не изменив. Впрочем, пусть даже у атома Водорода всего один электрон на 1s-подуровне, более высокоуровневые оболочки все же существуют, и если освещающий фотон или соударяющаяся частица будут обладать как раз подходящим количеством энергии, электрон может перейти в «возбуждение» и перескочить из основного состояния на один из более высоких уровней. Например, если рядом промчится фотон, имеющий точно 10,2 эВ, он, скорее всего, будет захвачен и уничтожен, поскольку именно такое количество энергии требуется электрону, чтобы перескочить на 2s-подуровень, оставив 1s-подуровень временно пустым. В случае, если с электроном соударяется частица, ее кинетическая энергия просто должна быть больше чем 10,2 эВ, поскольку электрон может вобрать необходимое ему количество, а вторгшаяся частица – отскочить и унести остаток энергии с собой. Отлетающая частица уже будет двигаться медленнее, поскольку отдала часть своей энергии электрону, поэтому такое столкновение мы называем неупругим (поступившая энергия не равна выделенной, потому что ее отчасти поглотил электрон, см. рис. 3.4).

Рис. 4.5. Схема энергетических уровней для атома Водорода, показывающая энергии связи на различных n-уровнях (подуровни не указаны в целях простоты). Электрон может поглотить энергию соударяющейся частицы или пакета световых волн, если кто-либо из них обладает достаточным количеством энергии, чтобы помочь электрону подняться на один из допустимых верхних уровней. Когда электрон вновь опускается вниз, он либо рождает свет, либо сообщает соударяющейся частице дополнительную энергию в количестве, соответствующем разнице в энергии между уровнями. Уровень, помеченный как 0 эВ, соответствует электрону, утратившему все связи с ядром; этот процесс мы называем ионизацией

Теперь электрон на 2s-подуровне Водорода находится в «возбужденном» состоянии. Электрон – частица в какой-то мере простая, и это состояние у него длится недолго. Если оставить его в покое, то в среднем через 0,125 секунды он снова перескакивает обратно в основное состояние, на 1s-подуровень. Этот соскок производит энергию, и появляется возможность унести ее в форме фотона с энергией 10,2 эВ – возбужденный атом может создать свет. Кроме того, это свет с очень специфической энергией, уникальной для разделения энергетических уровней в атоме каждого вида, и это позволяет нам распознавать атомы Водорода, Гелия и Углерода по всей Вселенной.

Альтернативный путь для снятия возбуждения – столкновение. В плотной среде атом может сотни раз в секунду подвергаться ударам со стороны своих соседей, а любой случайный удар способен вбить электрон обратно в основное состояние. В этом случае по-прежнему следует учитывать те самые 10,2 эВ энергии: она переходит в нанесшую удар частицу, благодаря чему происходит сверхупругое столкновение, в котором отлетающая частица обретает энергию, забрав ее у электрона.

У атома Водорода много уровней (в принципе, их количество бесконечно), и каждый отделен от других точно определенным количеством энергии. Переходы вверх и вниз между каждой парой уровней возможны (хотя некоторые более вероятны, нежели другие, и продолжительность существования на каждом возбужденном уровне чрезвычайно различается), поэтому энергий, при обладании которыми фотоны и соударяющиеся частицы могут создать условия, вызывающие перескок электрона, очень много, и они весьма разнообразны.

В более сложных атомах с большим количеством электронов допускается еще больше переходов. Внутренние уровни атомов с высоким атомным номером, таких как Уран, имеют очень прочные связи, поскольку каждый из десятков протонов в ядре привлекает ближайшие электроны, вследствие чего энергии связи превышают значения в тысячи электронвольт. Самые внешние электроны у большинства атомов удерживаются, в некоторой степени, столь же прочно, как электрон в атоме Водорода, поскольку для электрона, расположенного дальше всего от центра, любой атом в каком-то смысле подобен Водороду – каждый из электронов, находящихся ближе к ядру, нейтрализует один положительный заряд, так что одинокий внешний электрон эффективно воздействует лишь на один такой заряд. Например, в атоме Урана самые близкие к ядру электроны обладают энергией связи 115 000 эВ, а у самого дальнего от ядра (расположенного на 6d-уровне) энергия связи составляет 16,8 эВ – она лишь на 24 % больше, чем у единственного электрона в атоме Водорода.