Энергия связи ядра
В главе 3 мы говорили о том, как в атомном ядре, где проявляются все четыре фундаментальные силы, притяжение, рожденное сильным ядерным взаимодействием, преодолевает электростатическое отталкивание положительно заряженных протонов, втиснутых в тесное пространство, создавая тем самым сердце атома. Стабильность атомного ядра можно определить, если измерить интенсивность этой притягивающей силы, обусловленной сильным взаимодействием, вычесть отталкивающую электрическую силу и найти чистую энергию, с которой частицы притягиваются друг к другу, – энергию связи ядра. Она представляет собой то количество энергии, которое потребовалось бы вам, чтобы разорвать все протоны и нейтроны и пустить их по ветру. Точно так же, если учесть, что энергия преобразуется из одной формы в другую, энергия связи ядра показывает то количество энергии, которое выделяется, когда частицы объединяются, чтобы сформировать ядро. Это аналогично энергии связи электронов, описанной выше, но из-за интенсивности сильного ядерного взаимодействия, а также из-за того, что ядро занимает намного меньшее пространство, энергии связи ядра намного больше – вместо диапазона от 1 до 100 000 эВ, которые мы наблюдали у электронов, энергия связи ядра колеблется от 1 млн до 9 млн эВ для каждой ядерной частицы. Общая энергия связи ядра Углерода, имеющего шесть протонов и шесть нейтронов, составляет 92,1 миллиона электронвольт (МэВ), в то время как шесть его электронов обладают общей энергией связи в 632 эВ – разница в энергии между гуляющей по двору курицей, которую я чуть раньше привел в пример, и мотоциклом «Харлей-Дэвидсон», мчащимся со скоростью 120 км/ч.
Более того, электронвольт – невеликая единица измерения энергии, так что в масштабах, к которым привыкли люди, даже 92 миллиона – это немного. Но атомы тоже невелики, и если добавить энергию связи ядра в атомы Углерода в чешуйке графита, она будет соответствовать энергии пассажирского поезда с шестью вагонами, который весит 680 тонн и несется вперед со скоростью в 130 км/ч! Именно поэтому ядерные превращения – независимо от того, происходят ли они на атомной электростанции или в бомбе, – настолько мощнее химических реакций, в которых взаимодействие каждого атома с его ближайшим окружением производит примерно в 10 000 000 раз меньше энергии.
Энергию связи любого ядра можно рассчитать, просто взвесив его (или, выражаясь более точно, измерив его массу). Можно было бы подумать, что такое измерение даже не понадобится, поскольку нам известно число протонов и нейтронов в каждом ядре, поэтому мы могли бы просто сложить сумму масс составляющих частиц и вычислить итоговую. Но, как показал нам Альберт Эйнштейн, масса – это просто иная форма энергии, и вся эта энергия, связывающая ядро воедино, должна откуда-то поступать. На самом деле это «откуда-то» и есть масса: E = Δmc2, где E – это энергия связи ядра, Δm – разница между суммой масс составляющих частиц и массой самого ядра, а c – скорость света.
Мы произвольно выбрали атом Углерода, чтобы определить единицу атомной массы (разумно названную «атомной единицей массы» и получившую аббревиатуру а. е. м.). Выстроив шкалу таким образом, чтобы атом Углерода обладал массой в 12 а. е. м., мы можем провести расчеты, подобные тем, что приведены в рамке 4.3, и найти энергию связи ядра Углерода. Определив сумму составляющих атома, мы увидим, что общая масса превышает 12 а. е. м. на 0,8 %. Впрочем, когда мы соединяем все составляющие, эта избыточная масса выделяется в форме энергии – мы подробнее обсудим это в главе 16. Именно поэтому сияют звезды. Обратив массу в энергию при помощи уравнения Эйнштейна, мы получим 92,1 миллиона электронвольт энергии связи для атома Углерода – сверхскоростной пассажирский экспресс в чешуйке графита.
На шкале, где масса Углерода составляет 12 а. е. м., отдельный протон имеет массу 1,00728 а. е. м., а нейтрон – массу 1,00867 а. е. м. Так, шесть протонов обладают массой
6 × 1,00728 а. е. м. = 6,04368 а. е. м. приходится на протоны,
и шесть нейтронов лишь немногим тяжелее
6 × 1,00867 а. е. м. = 6,05202 а. е. м. приходится на нейтроны.
Но нам нельзя забывать об электронах. Их масса очень мала, но она не нулевая и составляет 9,1 × 10–31 кг для каждого электрона, так что шесть электронов добавляют