Выбрать главу

Бета-распад

Признание того, что бета-частицы – это всего-навсего электроны, не вызвало сколь-либо необычайного удивления на фоне представлений об атоме в начале XX столетия. В то время преобладала модель, в которой атом мыслился как «рождественский пудинг» из положительно заряженного теста с отрицательно заряженными электронами, подобными изюминкам (или, если угодно, кусочкам чернослива), благодаря чему он становился нейтральным и тем не менее содержал в себе единственную субатомную частицу, известную в те дни, а именно электрон. Требовался лишь некий процесс, происходящий в недрах атома и способный извергнуть эти изюминки-электроны, придав им высокую скорость. Но если вы до сих пор внимательно следили за моим повествованием, то вас должна была бы обеспокоить сама идея бета-распада: в нашей современной модели атома в ядре нет электронов! И не забывайте, когда речь заходит о радиоактивном распаде, мы говорим о превращении ядра!

И здесь нам на помощь снова приходит знаменитое уравнение Эйнштейна E = mc2. Масса и энергия взаимно заменяют друг друга, и если у вас достаточно энергии, вы можете создать некоторую массу. При условии, что масса электрона крошечна, сформировать его не настолько сложно. В перерасчете на единицы энергии масса электрона составляет 0,511 МэВ, а энергии связи ядра, как мы видели, колеблются в пределах от десятков до тысяч Мэ В. Впрочем, здесь тоже необходимо следовать определенным правилам. Выше мы уже упоминали о том, что нам необходимо сохранять заряд, массовое число и энергию.

Кроме того, есть еще одно правило: нам нужно сохранить не только число протонов и прибавленных к ним нейтронов, но и равно так же оставить неизменным число лептонов – это класс частиц, к которым принадлежат электроны и нейтрино (см. гл. 3). Эта задача становится легче благодаря существованию античастиц, которые, по определению, «отменяют» нормальные частицы. Можно без проблем создать электрон и антиэлектрон (позитрон), если вы располагаете излишком энергии в 2 × 0,511 МэВ или 1,022 МэВ и можете ее свободно потратить, – мы получим один отрицательный и один положительный заряд, нейтрализующие друг друга, а также один лептон и один антилептон, которые также взаимно уничтожатся (и при этом мы совершенно не меняли общее число протонов и нейтронов). До тех пор пока массовое число и заряд бережно уравновешены, мы можем создать один электрон и одно антинейтрино, что также обеспечит нам и сохранение лептонного числа.

Оказывается, что именно последний процесс (и другой, обратный ему, в ходе которого создаются один позитрон и одно нормальное нейтрино) характерен для бета-распада. В сущности, он может проходить тремя различными путями, и все они направлены на то, чтобы переместить атомное ядро ближе к счастливой долине стабильности. Если в ядре слишком много нейтронов, как у изотопа 12B, можно изящно решить проблему, выпустив электрон (а также антинейтрино, чтобы сохранить лептонное число), благодаря чему происходит эффективное преобразование нейтрона в протон и электрон. Обретая дополнительный протон, ядро поднимается на одну ступень в Периодической таблице, и Бор превращается в Углерод. В то же время к нему добавляется нейтрон, и соотношение нейтронов и протонов из 7:5 (слишком много нейтронов) превращается в 6:6 (все уравновешено).

Этот процесс идет не только в ядрах, похожих на 12B. Любой нейтрон, которому не посчастливится оказаться за пределами крепких объятий сильного взаимодействия, претерпит распад, и реакция 0n → 1p + –1e + продлится в среднем 880 секунд (примерно 15 минут). В пределах ядра временные рамки такой реакции варьируются в невероятной степени: у 12B она проходит за 0,02 секунды, а у 14С – за 5730 лет.