Выбрать главу

Эта ветвь бета-распада, в которой материнский элемент избавляется от электрона и тем самым сокращает соотношение протонов и нейтронов, перемещает изотоп из положения над границей стабильности вниз и вправо, ближе к ней. Изотопы, расположенные под границей, напротив, движутся вверх и влево, вкатываясь в долину стабильности, – и им, как следствие, требуется противоположный процесс, иногда называемый обратным бета-распадом. Например, 12N, у которого слишком мало нейтронов (соотношение 5:7), может попытаться обрести устойчивость, эффективно преобразив протон в нейтрон: 12N → 12C + e+ + ν, и мы получаем счастливый Углерод с соотношением 6:6 и соблюдением всех законов сохранения (заряд, массовое число, энергия и лептонное число). Так, при помощи бета-распада и обратного бета-распада радиоактивные изотопы на протяжении всей Периодической таблицы переходят в более стабильные формы, а предпочтение варианта зависит от того, на какой стороне долины они находятся.

Третий путь бета-распада – захват электрона – также позволяет получить более устойчивое ядро. Если в облаке, полном электронов, один из них оказывается слишком близко от ядра, его может затянуть внутрь, и тогда протон преобразится в нейтрон, как при обратном бета-распаде, а изотоп переместится ниже границы и станет ближе к стабильному состоянию. Пример, при помощи которого мы сможем это показать, – Бериллий‐7. В его ядре слишком много протонов и недостаточно нейтронов, поэтому оно охотно захватывает пролетающий по орбите электрон: 7Be + + e7Li + ν, после чего резко спускается на одну ступень и создает более удобное соотношение нейтронов и протонов, 4:3.

Гамма-распад

Последний тип «излучения», испускаемого радиоактивными ядрами, – высвобождение гамма-лучей – на самом деле оказывается единственным из трех, который в точности соответствует смыслу слова «излучение», поскольку это просто свет с высокой энергией. Он возникает точно так же, как и в том случае, когда электроны испускают свет с низкой энергией – благодаря переходу из возбужденного состояния в более спокойное. Из главы 4 мы помним о том, что, когда электрон, движущийся по орбите вокруг ядра, поглощает фотон или когда по нему ударяет подлетающая частица, он может вобрать эту энергию и перескочить в возбужденное состояние. По прошествии некоторого времени (в действительности, возможно, довольно краткого) он может вновь соскочить обратно и испустить собственный фотон. В атомном ядре есть аналогичные уровни энергетического возбуждения (см. рис. 6.2), доступ к которым оно может получать либо тогда, когда поглотит фотон с подходящей энергией или претерпит столкновение с пришедшей извне частицей, либо в том случае, если оно подвергнется альфа- или бета-распаду, который оставит ядро в возбужденном состоянии. А поскольку все энергии в ядре в миллионы раз больше тех, благодаря которым электроны удерживаются на своих орбитах, мы и получаем в той части спектра, где располагается гамма-излучение, фотоны не с несколькими электронвольтами (видимый свет), а с миллионами электронвольт (МэВ).

Спонтанное и вынужденное деление

Существует еще одна ярчайшая форма ядерного преобразования, которая сдвигает ядро не на несколько ступеней вверх или вниз в Периодической таблице, а перемещает его поразительно далеко от изначального положения, разрывая надвое или на несколько частей. В естественных условиях этот процесс наблюдается только у изотопов Тория‐232, Урана‐235, Урана‐238, Плутония‐239 и Плутония‐240, и даже в этих случаях он чрезвычайно редок. Например, у 238U он происходит лишь в 0,000054 % случаев, когда схождение в долину стабильности начинается с нормального альфа-распада. Впрочем, такой распад намного более распространен в рукотворных элементах, которые в Периодической таблице находятся выше Плутония. Например, 250Cm, изотоп Кюрия, элемента с атомным номером 96, спонтанно делится примерно в 74 % случаев, предпочитая эту заманчивую альтернативу и альфа- (18 %), и бета-распаду (8 %).

Рис. 6.2. Схематичное представление семи типов ядерного распада: альфа-распад, бета-распад, обратный бета-распад, захват электрона, гамма-распад, вынужденное деление и спонтанное деление. У тяжелых ядер отмечены их атомная масса, атомный номер и химический символ. У легких ядер, вовлеченных в бета-распад, подробно показаны числа протонов и нейтронов. Над каждой проиллюстрированной реакцией приведены уравнения распада