Выбрать главу

Число атомов, оставшихся в то или иное время, распадается по экспоненте, как показывает кривая, изображенная на рис. 6.4. Все обстоит точно так же, как при броске монет. Вероятность выпадения одного «орла» составляет 50 %. Вероятность двух «орлов» кряду – 25 %, поскольку равноценны все четыре следующих возможности: «орел-орел» (ОО), «орел-решка» (ОР), «решка-орел» (РО) и «решка-решка» (РР), и только одна из них дает желаемый исход (два «орла»). Вероятность выпадения трех «орлов» кряду влечет восемь возможных исходов: ООО, ООР, ОРО, ОРР, РРР, РРО, РОР, РОО, и только один из этих восьми будет для нас успешен (три «орла» кряду). В теории вероятностей есть правило, согласно которому для независимых событий (таких, как подбрасывание монетки или радиоактивный распад) мы рассчитываем вероятность всех трех событий в совокупности (первого, И ТАКЖЕ второго, И ТАКЖЕ третьего), просто перемножая вероятности совершения каждого из событий. В этом простом случае, где каждая из вероятностей составляет ½, вероятность получить n «орлов» кряду рассчитывается по формуле P(n) = (½)n.

В том случае, когда речь идет о радиоактивных ядрах, действует та же самая логика. Просто представим, что каждое ядро в нашей пробе за период полураспада один раз бросает монетку. Тогда половина получит «решку» и распадется, а другая половина, у которой выпадет «орел», продолжит жить. По истечении очередного периода полураспада (еще один бросок) прекратит существование еще одна половина ядер и так далее. Таким образом, можно записать, что число ядер, оставшихся в какой-либо момент времени T, в сравнении с числом, которым мы располагали в самом начале эксперимента, когда T = 0, находится по формуле:

N(T) = N(T = 0) × (½)T/t½,

где t½ – период полураспада изотопа. Если рассмотреть вышеупомянутый случай при T = 4 часа и t½ = 1 час, то N(4 часа) = 10 000 × (½)4/1 = 10 000/16 = 625. К полуночи T/t½ составит 12/1, а (½)12 = 1/4096, поэтому можно ожидать, что распад не коснется только 10 000/4096, или примерно 2–3 ядер; к 03:00, по всей вероятности, из первоначальной пробы не останется ни одного ядра.

Периоды полураспада у радиоактивных изотопов варьируются в огромных пределах, начиная от 0,0000000000000000000000023 секунды (2,3 × 10–23 с, или 23 йоктосекунды) у Водорода с шестью нейтронами (7H) до 2 200 000 000 000 000 000 000 000 лет (2,2 × 1024 лет, или 2,2 йоттагода – да, йоттагод – это очень долгий год) у Теллура‐128. В общем, время жизни приблизительно коррелирует с тем, насколько далеко от границы стабильности располагается изотоп; например, такие изотопы, как Теллур‐124, Теллур‐125 и Теллур‐126, очень уютно устроились в долине стабильности, а 128Te находится недалеко от нее, в то время как у Водорода стабильны лишь 1H и 2H, а 7H – очень далеко от кривой.

Рис. 6.4. Экспоненциальный распад радиоактивного источника. Один период полураспада – это время, необходимое для того, чтобы произошел распад 50 % образца. В течение следующего периода полураспада распадется 50 % того, что осталось. Таким образом, на горизонтальной оси, представляющей время на графике с периодами полураспада, мы видим, что по истечении пяти периодов полураспада остается лишь 1/2 1/4 1/8 1/16 1/32 образца

Невозмутимые часы

Причина, по которой радиоактивные изотопы столь полезны в раскрытии тайн прошлого, заключается в том, что скорость их распада практически неизменна и постоянна. На Уран, взятый в качестве образца, можно лить кислоту, нагревать его до миллиона градусов, замораживать почти до абсолютного нуля, поместить его в сильное электрическое и магнитное поле, переехать его танком – можно делать с ним все что угодно, и вы не измените период полураспада ни на йоту. Мало где еще, как в природе, так и в технологии, можно найти столь надежный хронометр.

К помощи этих радиоактивных часов мы обращаемся разными способами. Более обстоятельный рассказ ждет нас в будущих главах. В двух словах, если известно число атомов, существовавших в начальный момент, нужно просто посчитать оставшиеся атомы в момент наблюдения и, зная период полураспада, применить вышеупомянутое уравнение для нахождения T. Например, живое дерево поглощает из воздуха все обычные изотопы Углерода и встраивает их в свои молекулы целлюлозы. После того как дерево срубают, в нем остаются 12C и 13C, а остаток 14С начинает претерпевать полураспад. И если мы найдем бревно, бывшее частью древней постройки, и обнаружим, что в нем присутствует лишь половина от ожидаемого уровня 14С, то мы будем знать, что это дерево срубили 5730 лет тому назад. (В главе 8 мы поговорим об этом подробнее и внесем в этот метод датирования ряд необходимых корректив.)