Выбрать главу

Еще лет 10—15 назад представлялось, что чем глубже мы проникаем в вещество, чем детальнее видим его, так сказать, устройство, тем больше наблюдаем каких-то фрагментов, какого-то беспорядка, наблюдаем хаос, которому дали название «кипящий вакуум». Связано это с тем, что когда вы уменьшаете масштабы наблюдаемого пространства и уменьшаете масштабы времени наблюдения, а это делается с помощью все более совершенствующихся ускорителей, где частицы разгоняют до все более высоких энергий, то видите рождение все новых и новых частиц. И создается впечатление, что, углубляясь в микромир, мы видим все меньше и меньше порядка. Но в последние годы выяснилось (сначала это было установлено теоретически, а затем подтверждено в экспериментах на ускорителях), что на самом деле есть в микромире порядок и есть совершенно определенная внутренняя, очень красивая и, по существу, очень простая симметрия — симметрия, которая привела к современной кварковой модели строения элементарных частиц. И хотя сами кварки выделить и увидеть не удается — такова, видимо, природа вещей, — физики, и экспериментаторы и теоретики, работающие в этой области, достаточно уверены в их существовании. Кварковые модели являются основой стройной теории — квантовой хромодинамики, — в активе которой уже немало выводов, подтвержденных экспериментом. А это важнейший фактор, определяющий достоверность теории. Причем у квантовой хромодинамики нет пока никакой убедительной альтернативы, нет сколько-нибудь убедительной концепции, которая исходила бы из того, что вещество образовано не из кварков, а как-то иначе.

В «элементарных» частицах, состоящих из кварков, сами кварки связаны какими-то обменными процессами. Переносчики такого межкваркового взаимодействия — глюоны — еще один новый класс частиц. Причем силы, действующие между кварками, для нас совершенно непривычны — они не ослабевают с расстоянием. Именно поэтому нельзя наблюдать изолированные кварки. Если даже затратить огромную энергию, чтобы растащить пару кварков на заметное в масштабах микромира расстояние, то каждый из компонентов этой пары, каждый кварк мгновенно найдет в вакууме другой кварк и, объединившись с ним, родит элементарную частицу, в частности мезон. Экспериментаторы наблюдали подобные процессы по их конечному продукту — по ме-зонным струям.

Эти факты подтверждают достоверность кварковых моделей и свидетельствуют о том, что найдены новые «кирпичи» мироздания, что мы поднялись или, если говорить более строго, опустились еще на одну ступень в понимании конструкций микромира. Теперь мы, кроме того, с оптимизмом смотрим еще и на возможность объединения всех известных в природе сил, о чем мечтали выдающиеся физики нашего века.

Сегодня известны четыре класса сил, четыре вида физических взаимодействий: гравитационное, слабое, электромагнитное и сильное. Сейчас активно обсуждается возможность двух объединений, как говорят, сверхобъединений (гранд-объединений): возможность открытия единой природы сначала трех, а затем и всех четырех сил.

Сразу даже представить себе трудно, как много может дать четкое понимание единства всех сил природы, каким большим продвижением вперед это будет и в нашем понимании микромира, и, видимо, в управлении природными процессами, практическом их использовании. Вспомним: именно открытие единой природы электричества и магнетизма принесло человечеству такие блага, как универсальное использование электроэнергии: электрическое освещение, всевозможные электродвигатели, ставшие основой транспорта и моторизованной промышленности, а также телефон, радио, телевидение, звукозапись...

В возможности экспериментальной проверки идей великого объединения просматривается черта, характерная для всей физики, — открытие реалистичных конструктивных путей решения технических задач, которые на первый взгляд представляются неразрешимыми. Дело в том, что объединение сильного взаимодействия с электромагнитным и слабым должно наблюдаться при энергиях порядка 1015 ГэВ (миллиардов электрон-вольт), это примерно в миллион миллионов раз больше, чем энергия в самых мощных современных ускорителях. Чтобы получить энергию, необходимую для такого объединения, нужно было бы построить ускоритель длиной в световой год. А объединение названных трех сил с гравитацией должно наблюдаться при энергии еще в 10 тысяч раз большей, при 1019 ГэВ.

И вот появляются идеи проверки теории при значительно меньших энергиях. Проектируются и строятся ускорители, в которых за счет нестандартных физических и инженерных решений будут получены рекордные энергии частиц. Так, в ускорителе, который создается в Серпухове в Институте физики высоких энергий и для которого всемирно известный Серпуховской ускоритель на 70 ГэВ будет служить инжектором, энергия ускоренных частиц достигнет 3 тысяч ГэВ при огромных, но все же вполне реалистичных размерах ускорительного кольца (его диаметр равен 20 километрам). В Новосибирском институте ядерной физики, где в свое время академик Г. Будкер предложил идею и ускорения и сталкивания встречных пучков — одну из самых плодотворных в ускорительной технике, — сейчас идет работа над проектом машины, где встречные пучки формируются уже не в кольцах, а в линейных ускорителях, что позволит, в частности, избавиться от синхротронного излучения, которое ограничивает энергию частиц.