Диалектика развития техники такова, что спрос на качество металла всегда опережает возможности металлургии, и это один из главных стимулов ее прогресса. Вообще история металлургии прежде всего история борьбы за чистоту металла, за улучшение его структуры, ведь именно эти два фактора в конечном счете и определяют качество металла, а следовательно, реальность всех замыслов техники, эффективность, надежность и долговечность создаваемых машин, приборов, механизмов, сооружений.
Требование повышения чистоты и качества металлических материалов — веление времени. Чем чище сталь, чем однороднее ее структура, тем выше стойкость подшипников, больше ресурс авиационных двигателей и летательных аппаратов, дальше пробег локомотивов, надежнее гироскопы и электронные приборы, дольше срок службы буровых долот и режущего инструмента, лучше полирование нержавеющей стали, выше стойкость валиков прокатных станов и штампов и т. д. и т. п.
Чтобы сделать металл как можно чище, металлурги, кроме всех тех ухищрений, к которым они прибегают в процессе его непосредственного приготовления в самой печи, скажем, в дуговой индукционной или в конвертере, широко используют еще и различные способы вторичного рафинирования металла. Уже вне печи, как правило, в ковше, жидкий металл перед разливкой вакуумируют, обрабатывают синтетическими шлаками, продувают нейтральными газами. Это, естественно, позволяет значительно уменьшить содержание в нем газов, вредных примесей, посторонних неметаллических включений.
Но что с того, что в ковше будет получена относительно чистая сталь, если во время транспортировки ее к месту, где находится форма, в процессе разливки она снова загрязнится от взаимодействия с газами окружающей атмосферы, огнеупорными материалами ковша, с самой формой. Даже если всего этого и удастся избежать, что, конечно, требует усложнения и, соответственно, удорожания технологического процесса, на пути получения качественной отливки встает еще один весьма опасный противник: большая скорость кристаллизации металла в изложнице, форме.
В жидком металле все его составляющие, в том числе и примеси, были распределены равномерно. Но теперь при охлаждении они затвердевают не одновременно, да и сами кристаллы образуются не сразу во всем объеме, а начинают расти от стенок формы к центру отливки. В результате металл оказывается неоднородным по химическому составу, развивается ликвация, настоящий бич литейного производства. К тому же из-за неминуемой усадки металла при затвердевании и выделении газов в нем появляются поры, раковины, пузыри Со всеми этими дефектами ведут упорную борьбу. Но устранить их полностью невозможно. И ясно, что если слиток оказывается неоднородным по составу и структуре, то неоднородным будет он и по свойствам.
Итак, классической сталелитейной технологии присущ принципиальный недостаток: операции приготовления разделены операцией заливки. К тому же требуется разливка и быстрое затвердевание довольно больших масс металла. Именно с этим и связано ухудшение свойств литого металла.
Конечно, немало случаев, когда свойства такого металла удовлетворяют технику, и поэтому соответствующие детали, изделия получают непосредственно методом литья. Но чаще всего приходится отказываться от такого прямого пути. И тогда вначале отливают слиток, а затем с помощью его ковки или прокатки стараются устранить доставшуюся от литья дурную наследственность, улучшая тем самым качество металла, главным образом его прочность. И наконец, из такой деформированной заготовки — поковки или проката — изготавливают на металлорежущих станках требуемое изделие.
Но даже этот многоступенчатый процесс, за который приходится расплачиваться весьма дорого (заметьте, ежегодно у нас только в машиностроении при обработке поковок в стружку превращается более 8 миллионов тонн металла), нередко оказывается несостоятельным перед лицом требований, выдвигаемых новой техникой. И причина этому — недостаточная чистота исходного металла.
Первыми, кто «загнал в тупик» традиционную металлургию, были атомная и реактивная техника. Именно они, переживавшие в начале 50-х годов период своего становления, предъявили к конструкционным материалам, и прежде всего к специальным сталям и сплавам на основе железа, никеля и кобальта, исключительно высокие требования. Понадобились металлы, способные в невиданных ранее условиях радиации, высоких температур, давления, в агрессивных средах обеспечить абсолютно надежную работу изготовленной из них техники. А это значило, что надо суметь выплавить почти идеально чистый металл. Способы классической металлургии оказались непригодными.