Ясно, что надо искать другой подход к этой проблеме.
И тогда ученые Института электросварки имени Е. О. Патона обратились к ранее выдвинутой идее многослойных конструкций.
Применительно к трубе это означало, что делается она не монолитной, из толстого листа, а многослойной, из относительно тонкой рулонной стали. При этом используется не остродефицитная дорогая сложнолегированная сталь, а низколегированная, производство которой освоено отечественной металлургией.
В чем же смысл перехода от трубы с монолитной стенкой к многослойной?
Известно, что если взять совершенно одинаковые стальные заготовки, скажем, слиток, разделенный на две части, а затем одну из них прокатать до толстого листа, а другую выкатать в тонкий лист, то последний окажется прочнее и пластичнее; при этом чем тоньше лист, тем ниже температура, при которой он сохраняет вязкость. Словом, весь комплекс свойств, столь важных для обеспечения надежной эксплуатации трубопровода, у тонкой стали лучше, чем у толстой.
И если набрать пакет — а это и есть многослойная конструкция — из тонких листов, то он сохранит все преимущества тонкого листа — больше прочность, больше вязкость. Свойства каждого слоя не зависят от суммарной толщины конструкции. Значит, можно получать стенку с любой наперед заданной прочностью. При этом необходимая прочность будет достигнута при меньшей толщине, чем в случае монолитного металла.
Таким образом, разделив толщу металла на слои, мы тем самым умножили его прочность и вязкость.
Именно идея многослойной конструкции помогла в свое время успешно решить задачу изготовления сосудов высокого давления.
В энергетике, во многих химических производствах нужны реакторы, колонны, различные аппараты, способные выдерживать температуру в сотни градусов и давления в сотни атмосфер. Только в таких экстремальных условиях удается проводить некоторые технологические процессы, получать нужные вещества, материалы. Но чем выше поднимались давления, тем больше приходилось увеличивать толщину стенок сосудов, тем труднее и дороже становилось изготовление сосудов с монолитной стенкой, а в ряде случаев и просто невозможным. И то, что оказалось не под силу традиционным способам изготовления сосудов, удалось сделать, используя многослойную конструкцию.
На заводе «Уралхиммаш» в Свердловске создано уникальное производство сварных многослойных сосудов. За последние годы здесь изготовлено более 200 сосудов высокого давления, в том числе колонн синтеза аммиака, реакторов гидрокрекинга нефти с толщиной стенки до 400 миллиметров. Это 70—80 слоев, толщиной по 5—6 миллиметров каждый. Давления в этих аппаратах достигают 400 атмосфер, а температура — 400 градусов. Эти цифры сами по себе говорят о сложности эксплуатации таких аппаратов, но надо сказать, что надежность их чрезвычайно высока и ни одной аварии, ни одной неприятности с ними не произошло. Несомненно, многослойным сосудам высокого давления принадлежит большое будущее.
Использование многослойных труб позволит сравнительно просто решить проблему перехода к сооружению магистралей на более высокие давления. Действительно, если необходима труба, способная выдержать более высокое давление, чем предусматривалось раньше, то достаточно намотать один-два или более дополнительных слоев. Иными словами, из одной и той же дешевой стали можно получать трубы, рассчитанные на любые требуемые давления.
Можно пойти и по другому пути — изготавливать многослойные трубы с теми же прочностными характеристиками, что у труб со сплошной стенкой. А так как для этой цели будет взята не сложнолегированная дорогая сталь, а низколегированная, более дешевая, то понятно, что стоимость труб, сохранивших заданную прочность, окажется существенно меньше.
Широкие испытания многослойных труб в полевых условиях, в том числе и на Севере, убедительно свидетельствуют об их несомненных достоинствах и преимуществах перед трубами с монолитной стенкой.
Во многих странах мира занимаются проблемой борьбы с лавинными разрушениями. Одно из сложившихся в последнее время направлений — создание всевозможных ловушек. Они врезаются в магистраль из монолитных труб и должны, как показывает само название, поймать трещину, задержать развитие разрушения.
И для этой цели многослойная конструкция оказалась весьма эффективной. В нашем институте такие ловушки созданы. Провели на Севере натурные испытания. И убедились, что эти ловушки способны абсолютно надежно остановить лавинную трещину любого типа — и хрупкую, и вязкую. Трещина, встретив на своем пути ловушку, кольцуется в ней и останавливается.