В связи с истощением залежей богатых цветными и благородными металлами руд перед электрохимической наукой была поставлена задача найти способы получать эти металлы из малоконцентрированных растворов. Можно считать ее решенной. И это очень важно не только для металлодобывающей промышленности, но и для решения проблем, связанных с охраной окружающей среды.
Раз уж мы коснулись этой весьма болезненной теперь темы, позволю себе несколько слов сказать о том, какие надежды можно возлагать здесь на электрохимию. Как известно, системы, вырабатывающие электрическую и тепловую энергию, несут в себе тайную или явную опасность живому миру. Уровень опасности от различных энергетических установок неодинаков, но опасность существует, хотя и предпринимаются соответствующие защитные меры. Электрохимические источники в этом смысле могут считаться исключением в той же примерно степени, как если сравнивать аккумулятор с двигателем внутреннего сгорания. Невидимые глазу, бесшумные и бездымные процессы вырабатывают источники энергии и саму энергию в наших установках. Более того, электрохимия и сама может прийти на помощь живой природе, защитить ее там, где никто не сумеет защитить. Дело в том, что вредные вещества чаще всего находятся в смеси с веществами безвредными. Электрохимическими способами можно разрушать такие соединения, извлекая из них вредоносные компоненты, либо разрушать их структуру. Такие установки уже достаточно эффективно работают в разных отраслях промышленности.
Рассказывая о прошлом, настоящем и будущем науки, в которой я многие годы работаю, говоря о прикладном ее значении, о том, как укрепилась она, как продолжает набирать силы, а набрав, двигаться по новым направлениям, считаю нужным вкратце познакомить читателя еще с одной немаловажной областью, в которую проникает электрохимия. С нею тоже связаны немалые надежды, причем достаточно обоснованные. Я имею в виду преобразование солнечной энергии в химическую или электрическую, но преобразование не через каких-то посредников, с которыми всегда связаны избыточные потери, а напрямую.
Проблема эта хотя и сложная, но, согласитесь, очень привлекательная. Добавлю, что в принципе такое прямое преобразование энергии возможно, и это можно считать доказанным, хотя практические результаты очень незначительны. Пока что коэффициент преобразования всего лишь 1—3 процента. Но ведь все-таки получилось!
С помощью электрохимического процесса, используя энергию не ископаемого топлива, а солнца, можно, оказывается, получать водород и кислород. Понятно, говорить о какой-либо экономической эффективности преждевременно. В этом смысле более уместным было бы говорить об отрицательном экономическом эффекте. Но разве мало примеров знает история развития науки, когда еще менее значительные на первых порах результаты давали затем могучий импульс движению человеческой мысли. Отрицательный результат полезен тем, что предупреждает последующих исследователей не ходить этим путем, а искать новый. В нашем случае получен хотя и скромный, но все же положительный результат. Значит, нужно двигаться дальше.
Задача теперь — отыскать новые электроды, а точнее, материал для них, но такой, чтобы был он недефицитен, дешев, обладал бы достаточной коррозионной стойкостью и наилучшей для солнечной радиации спектральной областью поглощения. Как видите, задача в известной степени определилась, а это вселяет надежду, что со временем удастся ее решить. Кстати, поиски материалов, обладающих оптимальными характеристиками в условиях различных технологических процессов, и приготовленные из них электроды — центральная проблема во всей электрохимической технологии.
Размышляя о путях развития как теоретической, так и прикладной электрохимии, о тех жгучих проблемах, которые ставит жизнь, нельзя не подумать о том, как велики еще резервы и возможности. Нельзя не подумать и о том, что не всегда еще прикладная электрохимия идет путем, который освещается прожектором теоретической науки, а потому путь этот становится в иных случаях непозволительно долгим.
Сила науки в непрерывном творческом взаимодействии ее теоретических и прикладных разделов. Весь опыт жизни науки показывает, что отсутствие такого взаимодействия одинаково пагубно влияет на их прогресс. Без ориентации на достижения фундаментальной науки невозможно обеспечить быстрое движение вперед по пути технического прогресса, да и сам прогресс, если его удается достигнуть, становится слишком дорогим и малоэффективным. В свою очередь, уход от решения задач, выдвигаемых практикой, неизбежно приводит к измельчению теоретических исследований. Лишенная питательной среды теория неизбежно вырождается и превращается в «вещь в себе». В связи с этим уместно вспомнить слова известного электрохимика прошлого века В. Оствальда, который, рассматривая задачи теоретических исследований, писал: «Любая самая отвлеченная наука видит оправдание своего существования в надежде оказаться полезной человечеству в качестве науки прикладной».