Выбрать главу

Препятствовала исследованиям и математическая составляющая проблемы. И не потому, что управляющие рулеткой математические законы чересчур сложны, наоборот – они слишком просты. Редакторы научных журналов очень разборчивы в выборе публикаций, и попытки разобраться в поведении «чертова колеса» при помощи школьных знаний – тема не очень для них привлекательная. Впрочем, иногда в печати все же появлялись публикации, посвященные рулетке, например работа Торпа с описанием его метода. И хотя Торп разболтал достаточно, чтобы убедить читателей, в том числе эвдемонистов, что смоделированный на компьютере прогноз может быть успешным, подробности он опустил. Самые интересные вычисления в статье явно отсутствовали.

Уговорив руководство университета приобрести рулетку, Смолл и Цэ попытались воспроизвести стратегию эвдемонистов. Они начали с разделения траектории шарика на три фазы.

Три стадии спина

Когда крупье запускает колесо рулетки, шарик сначала двигается вокруг его верхнего обода, в то время как центральная часть рулетки крутится в противоположном направлении. В это время на шарик воздействуют две конкурирующие силы: центростремительная сила удерживает его на ободе, а сила притяжения тянет вниз, к центру колеса.

Ученые принимали во внимание, что во время вращения шарика сила трения замедляет его движение. В конце момент импульса шарика уменьшается настолько, что гравитация побеждает. В этой точке шарик переходит во вторую фазу – он сходит с ободка и беспрепятственно движется по дорожке между ободком и дефлекторами. Шарик постепенно смещается к центру колеса до тех пор, пока не столкнется с одним из расположенных на окружности дефлекторов.

До этой точки траекторию шарика может просчитать даже школьник. Но как только он ударяется о дефлектор, его траектория рассеивается, и теоретически он может остановиться в одной из нескольких ячеек. Для игроков это означает, что шарик покидает мир уютной предсказуемости и погружается в подлинный хаос.

С этой неопределенностью Смолл и Цэ могли справиться при помощи статистических измерений. Правда, для простоты они решили свести прогноз к определению числа на рулетке, рядом с которым будет находиться шарик, когда столкнется с дефлектором. Чтобы предсказать точку, в которой шарик будет задевать один из дефлекторов, Смоллу и Цэ необходимы были шесть параметров: первоначальное положение шарика, его скорость и ускорение и аналогичные показатели для рулетки. К счастью, эти шесть параметров можно было свести к трем, если рассматривать траекторию с другой отправной точки. Для стороннего наблюдателя шарик движется в одном направлении, а колесо – в другом. Однако расчеты можно произвести и «с позиции шарика», в этом случае необходимо только измерить, как шарик движется относительно колеса. Смолл и Цэ делали такие расчеты посредством секундомера, фиксируя время прохождения шариком определенной точки.

Написав компьютерную программу для проведения расчетов, Смолл приступил к экспериментальному тестированию системы. Он запустил шарик в рулетке, проводя необходимые измерения вручную, как это делали эвдемонисты. Когда шарик описал около дюжины кругов вдоль обода колеса, Смолл собрал достаточно информации, чтобы предугадать, где он остановится. В этот день он смог провести свой эксперимент 22 раза, прежде чем пришлось закрывать кабинет. Три попытки увенчались успехом – Смолл смог точно спрогнозировать число, на которое выпадет шарик. Если бы он брал случайные числа, вероятность получения такого результата (значение р) составила бы менее 2 %. Теперь Смолл не сомневался: стратегия эвдемонистов работает, и наука может победить рулетку.

После ручных измерений Смолл и Цэ установили высокоскоростную камеру для сбора более точных данных о положении шарика. Камера делала примерно 90 снимков в секунду, позволяя увидеть, что происходит с шариком после столкновения с дефлектором. С помощью двух студентов-инженеров ученые запустили колесо 700 раз, фиксируя разницу между своими прогнозами и полученным результатом. Собрав всю информацию, они рассчитали вероятность остановки шарика на определенном расстоянии от прогнозируемой ячейки. Для большинства ячеек эта вероятность не была особо малой или большой; выпадение было приблизительно таким же, как если бы они выбирали ячейки в этой области случайно. Тем не менее вырисовывалось несколько закономерностей. Шарик останавливался в прогнозируемой ячейке намного чаще, чем если бы его движение было хаотично. Более того, он редко останавливался на цифрах, расположенных непосредственно перед прогнозируемой ячейкой. Последнее, впрочем, было вполне объяснимо: чтобы добраться до этих ячеек, шарику пришлось бы отскакивать назад.