Кардано был одним из первых, кто заметил, что азартные игры поддаются математическому анализу. Он осознал, что, лавируя в мире случайностей, можно нащупать его границы. А значит, можно исследовать совокупность возможных результатов и выделить наиболее важные. Игральные кубики могут выпадать в тридцати шести различных комбинациях, однако лишь в одной из них выходят две шестерки. Кардано научился управляться с множеством случайных событий и вывел «формулу Кардано» для расчета шансов на выигрыш в повторяющихся играх.
Интеллект был не единственным оружием Кардано за игровым столом. При себе он всегда имел кинжал и не стеснялся пускать его в дело. В 1525 году в Венеции математик обнаружил, что его соперник за карточным столом жульничает. «Когда я увидел, что у него крапленые карты, я в гневе порезал ему лицо кинжалом, – вспоминал Кардано, – хотя и не очень глубоко».
Позже и другие ученые пробовали проникнуть в тайну теории вероятности. Галилей по заданию благородных семейств Италии пытался выяснить, почему в костях одни комбинации выпадают чаще, чем другие. Астроном Иоганн Кеплер на время отвлекся от изучения движения планет, чтобы написать небольшую работу по теории этой игры.
Но по-настоящему наука об удаче расцвела в 1654 году, когда проблемой занялся французский писатель Антуан Гомбо. Ему не давал покоя вопрос: что более вероятно – выпадение шестерки в четыре броска одним кубиком или выпадение двух шестерок при 24 бросках двумя кубиками? Гомбо считал, что вероятность одинакова, но доказать этого не мог. Тогда он обратился за советом к своему другу, математику Блезу Паскалю.
К разгадыванию тайны выпадающих шестерок Паскаль привлек Пьера де Ферма, своего коллегу-математика и состоятельного адвоката. Взяв за основу работу Кардано о случайности, вместе они сформулировали основы теории вероятности. Впоследствии большая часть выдвинутых исследователями концепций заняла центральное место в математической теории. Помимо прочего, Паскаль и Ферма вывели для игры «ожидаемое значение» – параметр, измерявший вероятность выигрыша при множестве партий. Их исследования показали, что Гомбо ошибался: шансов выпадения шестерки при четырех бросках одним кубиком больше, чем двух шестерок при 24 бросках двумя кубиками. Но все же именно благодаря Гомбо математика получила совершенно новое научное направление. По мнению Ричарда Эпштейна, «любители азартных игр могут по праву назвать себя крестными отцами теории вероятности».
Изучение азартных игр позволило ученым не только понять, стоит ли игра свеч в чисто математическом смысле слова, но и пролить свет на то, чем мы руководствуемся, принимая решения в повседневной жизни. В XVIII веке Даниил Бернулли задумался, почему люди чаще предпочитают делать небольшие ставки, а не ставки покрупнее, теоретически способные принести бо́льшую выгоду. Если основным двигателем финансового выбора является не ожидаемая прибыль, то что?
Бернулли нашел ответ, осмыслив проблему не с точки зрения ожидаемого вознаграждения, а с позиции так называемой «ожидаемой целесообразности». Он предположил, что одно и то же количество денег имеет бо́льшую или меньшую ценность в зависимости от того, сколько денег имеется у человека. Например, для бедного человека одна монета гораздо ценнее, чем для богатого. Как заметил еще один ученый-математик Габриэль Крамер, «математики оценивают деньги соразмерно их количеству, здравомыслящие люди – соразмерно возможности их использования».
Это было чрезвычайно важное открытие. Концепция целесообразности лежит в основе всей индустрии страхования. Большинство людей предпочитают вносить регулярные установленные взносы, чем не платить ничего, рискуя однажды получить огромный счет, даже если платить понемногу выйдет дороже. Купите вы страховку или откажетесь от нее, зависит от целесообразности. Люди не склонны страховать то, что в случае утраты будет легко заменить.
В последующих главах мы рассмотрим, как азартные игры оказывали влияние на разные области науки – от теории игр и статистики до теории хаоса и технологий по разработке искусственного интеллекта. Наверное, нам не стоит удивляться тому, как тесно связаны между собой наука и азартные игры. В конце концов, азарт открывает для нас окно в мир возможностей. Игры учат, как найти равновесие между риском и ожидаемым вознаграждением и объясняют, почему в разных обстоятельствах мы придаем определенным вещам разное значение. Они помогают понять, как наш мозг принимает решения и как мы можем управлять своей удачей. Объединяя в себе математику, психологию, экономику и физику, азартные игры представляют собой настоящий заповедник для исследователей, которых интересуют случайные или кажущиеся таковыми события.