Выбрать главу
palaeontologists, who excavated for many years at Olduvai gorge, carefully studied Oldowan technology and although by later standards the stone tools were very primitive, the Leakeys and their colleagues were able to distinguish four 'types'-heavy duty choppers, light duty flakes, used pieces and what is known as debitage , the material left over after the tools have been produced. There is still much discussion as to whether the early hominids at Olduvai were passive scavengers, or confrontational scavengers, as the Hadza are today.16 Who made these early tools? Nothing of the kind has ever been found associated with A. afarensis remains. By the time tools appear, various species of hominid co-existed in Africa, two or three of which are given the family name Paranthropus ('alongside man'), also known as A. robustus and A. boisei , with the others belonging to Homo -these are H. habilis ('Handy man'), H. rudolfensis and H. ergaster . These different hominids varied in interesting ways that make the exact line of descent to ourselves difficult to fathom. All had bigger brains than 'Lucy' (500-800 cc, as compared with 400-500 cc), but whereas H. habilis had an ape-type body with more human-like face and teeth, H. rudolfensis was the other way round-a human-type body and more ape-like face and teeth.17 In theory, any of these species could have produced the tools but two reasons seem to rule out Paranthropus . The first reason relates to the thumb of primitive man. The anthropologist Randall Susman has noticed that chimpanzees have very different thumbs from human beings. Chimps have curved, narrow-tipped fingers and short thumbs-ideal for grasping tree limbs. Humans, on the other hand, have shorter, straighter fingers with squat tips, and larger, stouter thumbs. This is a better arrangement for grasping things like stones. On examination, it turns out that A. afarensis had chimpanzee-like thumbs and so, probably, did Paranthropus . A second reason is that, if Paranthropus had manufactured tools, in addition to the Homo family, we should almost certainly find two separate tool traditions in the fossil record. We don't. Steven Mithen, an archaeologist at the University of Reading, in Britain, has conceived the primitive mind as consisting of three entities: a technical intelligence (producing stone tools), a natural history intelligence (understanding the landscape and wildlife around him/her), and a social intelligence (the skills needed to live in groups). At the level of H. habilis , says Mithen, there is no evidence that social intelligence was integrated with the other two. The stone tools are associated with animal bones-the victims of early hunters. But from the evidence so far obtained there is no social separation of tools and food, no evidence at all of organised group activity-the earliest archaeological sites are just a jumble of tools and bones.18 From this faltering beginning, a major step forward was taken some time between 1.8 and 1.6 million years ago, with the appearance of another new species, Homo erectus -upright man-found first at Koobi Fora and then in Java. With his 'sad, wary face and flat nose', H. erectus was the first human to leave Africa, other remains having been found in Dmanisi in Georgia, and in mainland Asia: in October 2004 stone tools believed to have been made by
H. erectus were reported as having been found in Majuangou, west of Beijing, and dated to 1.66 million years ago.19 He or she shows a further increase in brain size, the second-most sizeable jump-but perhaps the most important of all-to 750-1,250 cc, though the skulls were also marked by robust brow ridges.20 After what we may call a 'technology lag' of about 400,000 years, we find that at around 1.4 million years ago, the earliest true hand-axes appear. These, the third type of hand-axe, are 'true' in the sense that they are now symmetrical, formed by knocking flakes off the core alternately from either side, to produce an elegant long point and a stone with a pear shape. These are known to professionals as Acheulian because they were first discovered by French archaeologists in the Amiens suburb of St Acheul. (Much stone-age terminology is based on the place names of French sites- Cro-Magnon, Mousterian, Levallois-where French archaeologists were the first to make the discoveries.) These hand-axes appear abruptly in the archaeological record in Africa, Europe and parts of Asia (though much less so in south-west Asia and not at all in south-east or east Asia). Some palaeontologists believe that H. erectus was a hunter, the first true hunter, rather than a scavenger, and that his better tools enabled him to spread across Eurasia, what is sometimes called the Old World. Homo erectus may also have invented cooking. This is inferred because, although he was 60 per cent larger than his predecessors, he had a smaller gut and teeth. This could be accounted for by cooking which, in breaking down the indigestible fibre of plants into energy-giving carbohydrate, puts fewer
demands on the teeth and alimentary canal. For this reason, the most interesting H. erectus site is probably Zhoukoudien (literally 'Dragon Bone Hill'), a cave situated about twenty-five miles south-west of Beijing in a range of limestone hills. In a series of excavations carried out mainly in the 1930s, the site was dated to about 400,000-300,000 years ago. The significance of Zhoukoudien is that it appears to have been a base camp from which H. erectus hunted and brought back their kills to be cooked and eaten. But were the animals (again, large mammals such as elephants, rhinoceros, boars and horses) actually cooked? A quantity of hackberry seeds was found at Zhoukoudien, making them the earliest plant remains known, and they probably survived only because they had been burnt. The consensus now appears to be that this wasn't the purposeful use of fire, as we would understand it, but the issue-like so much else at that period-remains unresolved.21 Claims have been made for the use of fire as far back as 1.42 million years ago. At least thirteen African sites provide evidence, the earliest being Chesowanja in Kenya, which contained animal bones alongside Oldowan tools and burnt clay. As many as fifty pieces of burnt clay were found and, to some palaeontologists, the layout of certain stones suggested a hearth. Tantalisingly, no burnt clay was found outside this narrow area and tests on the clay itself showed it to have been fired to about 400 , roughly typical of campfires.22 Stone tools have been found in association with burnt animal remains at several sites in China dating from before one million years ago. Johan Goudsblom has pointed out that no animal species controls fire, as humans do. Some prehistorians believe that early humans may have followed fire, because roasted animal flesh is better preserved (chimpanzees have been observed searching for afzelia beans after bush fires; normally too tough to eat, after a fire they crumble easily).23 The archaeologist C. K. Brain advanced the idea that it was man's control of fire which helped convert him from being the prey of the big cats to being a predator-fire offered protection that earlier man lacked. And in Spain there is evidence of the use of fire as a way to corral elephants into a bog, where they were butchered. Later, keeping a fire alive continuously would have encouraged social organisation.24 The latest evidence reports a campfire, with burnt flint fragments, in tiny clusters, suggesting hearths, dated to 790,000 years ago, at Gesher Benot Ya'aqov in northern Israel. The control and use of fire may therefore count as one of primitive man's three earliest ideas. From such ancient skulls as have been unearthed, we may conclude that there were two early spurts in brain growth, the first being the larger, each of which was associated with a change in stone technology: these were the first tools, associated with H. habilis , and bifacial Acheulian tools, associated with H. erectus . After this, apart from the use of fire, only one thing seems to have happened for nearly a million years. This was the 'standardisation' of the hand-axe, around 700,000 years ago. Allowing for individuality, and for the fact that, about a million years ago, H. erectus spread out over much of Eurasia(i.e., not the northern latitudes, Australia or the Americas)-and therefore had to deal with very different forms of stone-hand-axes everywhere nevertheless began to show an extraordinary degree of uniformity. Thousands of hand-axes have now been examined by palaeontologists from all over the world, and they have shown that, although of different sizes, most axes are constructed in almost identical proportions. This is not chance, say the experts. V. Gordon Childe, the eminent Australian archaeologist, actually went so far as to say that the standardised tool was 'a fossil idea' and that it needed a certain capacity for abstract thought on the part of H. erectus . In order to produce a standardised tool, Childe argued, early man needed some sort of image of tools in general. Others have gone further. 'Hand-axes from many...sites, show that...the mental apparatus already existed for [early man to make] basic mathematical transformations without the benefit of pen, paper or ruler. It was essentially the same operation as Euclid was to formalise hundreds of thousands of years later.'25 A third spurt in brain size occurred around 500,000-300,000 years ago, with a jump from 750-1,250 cc (for H. erectus ), to 1,100-1,400 cc. In Africa, this new, larger-brained individual is known as archaic H. sapiens , and it would later give rise to the Neanderthals. After another 'technology lag', and beginning around 250,000 years ago, we see the introduction of the fourth type of stone tool, produced now by the so-called Levallois technique. Crude hand-axes die out at this point, to be replaced by stone nodules much more carefully prepared. Levallois-Perret is a suburb of Paris and it was during an excavation in the