В 1906 году, через год после annus mirabilis, года чудес, Эйнштейна, в городе Брно (на территории нынешней Чешской Республики) родился Курт Гёдель. Ребенком Гёдель был и любознательным – родители и брат прозвали его «герр Варум» («господин Почему») – и нервным. В пять лет у него, судя по всему, было легкое тревожно-невротическое расстройство. В восемь он пережил тяжелейшую ревматическую атаку, после чего всю жизнь был убежден, что у него непоправимые нарушения работы сердца и это смертельно.
В 1924 году Гёдель поступил в Венский университет. Он собирался изучать физику, но вскоре его пленила своей красотой математика, особенно мысль о том, что абстракции вроде чисел и окружностей существуют вечно и неизменно, независимо от человеческого сознания. Это учение называется платонизм, поскольку происходит от теории идей Платона, и всегда было популярно среди математиков. Однако в венских философских кругах двадцатых годов платонизм считался безнадежно устаревшим. В богатейшей культуре венских кафе процветали всевозможные интеллектуальные направления, но наибольшую известность получил «Венский кружок» – группа мыслителей, объединенных представлением о том, что философию следует очистить от метафизики, переосмыслить и превратить в точную науку. Под влиянием Людвига Витгенштейна, невольно ставшего их гуру, члены Венского кружка стали считать математику игрой с символами, вроде шахмат, только сложнее. Они полагали, что утверждение наподобие «2+2=4» истинно не потому, что оно точно описывает какой-то абстрактный мир чисел, а потому, что его можно вывести в рамках логической системы в соответствии с определенными правилами.
Гёделя привел в Венский кружок его университетский преподаватель, однако о своих платонических воззрениях молодой человек предпочитал молчать. Он любил строгость во всем и не терпел споров, поэтому не хотел отстаивать свои воззрения, пока не разработает безупречного доказательства своей правоты. Но как доказать, что математику нельзя свести к логическим ухищрениям? Гёдель избрал тактику сверхъестественно хитрую и одновременно, по словам философа Ребекки Голдштейн, «умопомрачительно красивую»: он обратил логику против себя самой. Он начал с логической системы математики – предполагалось, что эта система лишена противоречий – и построил своеобразную схему, благодаря которой смысл формул стал демагогическим. Формула, говорившая что-то о числах, согласно этой схеме могла толковаться как высказывание о других формулах и об их логическом соотношении друг с другом. Более того, как показал Гёдель, численную формулу можно заставить даже сказать что-то о себе самой. Тщательно выстроив этот аппарат математической самоссылаемости, Гёдель придумал поразительный трюк: составил формулу, которая не просто прямо говорила что-то о числах, но и добавляла: «Я недоказуема». Поначалу показалось, будто это парадокс, ведь он напоминает древнюю притчу о критянине, который говорил, что все критяне лжецы. Однако ссылающаяся сама на себя формула Гёделя говорит не о своей истинности, а о своей доказуемости. Может ли она лгать, утверждая «Я недоказуема»? Нет: если бы она лгала, это означало бы, что она доказуема, а доказуемость сделала бы ее истинной. Потому, утверждая, что ее нельзя доказать, она говорит истину. Но истинность этого утверждения видна только извне логической системы. Внутри системы его нельзя ни доказать, ни опровергнуть. Таким образом, система неполна, поскольку есть по крайней мере одно истинное утверждение о числах, то самое, которое говорит «я недоказуемо», которое нельзя доказать изнутри системы. Такой вывод – что ни одна логическая система не способна вместить все математические истины – известна как первая теорема о неполноте. Гёдель также доказал, что нет такой логической системы, описывающей математику, которая была бы свободна от непоследовательности, причем это можно было бы доказать ее же средствами – этот результат известен как вторая теорема о неполноте.