Эти жужжащие интеграторы и проворачивающиеся шестеренки машин Буша воплощали собой сам процесс вычисления. Подобно хорошим инженерам, они принимали чертежи в виде вводных данных и выдавали их в виде данных на выходе. Они могли появиться в любом месте, но нет ничего удивительного в том, что собрали эти машины на факультете инженерного дела.
К 1924 году Буш и его студенты построили интегрирующую машину, которая по своим характеристикам превосходила машину Форда. К 1928 году в процессе поиска надежной вычислительной системы им удалось смоделировать 320 километров линий электропередач в помещении лаборатории площадью пятнадцать квадратных футов. В тот же год началась работа по созданию универсального аналогового компьютера: дифференциального анализатора.
«Это была устрашающая штуковина с валиками, шестеренками, ремнями и колесиками, вращающимися на дисках…»
По завершении – на это ушло три года и 25 000 долларов – получился мозг размером с комнату, металлическая вычислительная машина, которая могла жужжать своими шестеренками, решая задачу дни и ночи напролет, пока не застопорится. На решение одной задачи – определить степень влияния космических лучей на магнитное поле земли – ушло тридцать недель. Но когда все было завершено, дифференциальный анализатор с помощью своей грубой силы решил уравнения столь сложные, что человеку браться за них было бессмысленно. Теперь лаборатория Буша имела в своем распоряжении вычислительный прибор, способный переходить от решения проблем промышленного масштаба к некоторым фундаментальным вопросам физики.
«Это была устрашающая штуковина с валиками, шестеренками, ремнями и колесиками, вращающимися на дисках, – вспоминал физик из МТИ, который воспользовался помощью дифференциального анализатора, чтобы изучить поведение рассеянных электронов, – но она работала». Устройство представляло собой огромную деревянную рамку, закрытую решеткой, с вращающимися цилиндрами, напоминающую гигантскую 100-тонную игру в настольный футбол. На том конце аппарата, где вводились данные, были установлены шесть столов для чертежников. Там машина считывала уравнения, которые ей нужно было оценить. Совсем как в анализаторе Томсона, который считывал графики приливов. Операторы поворачивали рукоятки, а те, в свою очередь, направляли указатели над нарисованным вручную графиком уравнения, которое нужно было проанализировать. «Например, – было написано в одном из отчетов того времени, – при расчете рассеяния электронов на атоме необходимо снабдить машину данными по соотношению между потенциалом поля атома и расстоянием от центра атома». И тогда детали уравнения передавались внутренним валикам машины. Каждый валик соответствовал определенной переменной величине (току в линии электропередач или размеру атомного ядра). Чем больше была величина, тем быстрее крутился валик. А они, в свою очередь, приводили в движение интеграторы, сделанные по типу интеграторов Форда: плоский диск вращался на месте, а перпендикулярно диску располагалось интегрирующее колесо. Чем дальше от центра диска ставили колесо операторы, тем быстрее оно вращалось. Колесо было соединено еще с пятью интеграторами идентичной конструкции. На выходе быстро вращающиеся интегрирующие колеса направляли карандаш, который двигался вверх-вниз, в то время как под ним равномерно разматывалась бумажная лента. Целью был график, и нужный появлялся спустя несколько дней или даже месяцев вращений.
Математика была безгранично сложной областью знаний. Но газонокосилка Вэнивара Буша могла бы узнать в этой вычислительной комнате своего далекого потомка. «Дифференциальный анализатор, – писал один научный историк, – все равно истолковывал математику посредством механических оборотов и все равно зависел от мастерски выполненных интеграторов в виде колеса и диска, продолжая выдавать ответы кривыми линиями». Уравнения и траектории подъема.
Следовало признать, что компьютеры Буша очень сильно напоминали своего раннего предшественника, «измеритель рельефа».