Выбрать главу

Неизвестно, будет ли эта формула успеха когда-либо еще раз воспроизведена. С одной стороны, сейчас наблюдается взрыв публикаций. Множество теорий борются за доминирование — гораздо активнее, чем во времена Эйнштейна и Шрёдингера. Кроме того, энергии, необходимые для проверки этих теорий, требуют все более дорогих и трудоемких проектов, таких как Большой адронный коллайдер под Женевой в Швейцарии. Сегодня экспериментальная наука не может ограничиваться измерениями во время солнечных затмений, она работает намного медленнее и осторожнее, она требует анализа гораздо большего количества данных. В физике высоких энергий исследовательские команды обычно насчитывают сотни ученых, а не единицы пионеров-исследователей, как это было раньше. В то же время СМИ разделились и следят за достижениями различных известных физиков.

Питер Хиггс, один из лауреатов Нобелевской премии по физике 2013 года, — редкий пример современного блестящего теоретика, приобретшего широкую известность. Тем не менее вряд ли он может сравниться по популярности с Эйнштейном. Частица, названная в его честь бозоном Хиггса, стала известна как «частица Бога». Когда бозон Хиггса был обнаружен в 2012 году, большая часть сообщений в прессе наделяла его божественной сущностью.

К глубокому сожалению Индии, ее достойный сын Шатьендранат Бозе упомянут не был.

Триумф Стандартной модели

Открытие бозона Хиггса стало последним недостающим кусочком головоломки Стандартной модели физики элементарных частиц — модели, наиболее близкой к единой теории поля из всех, что мы имеем сегодня. Стандартная модель включает в универсальное объяснение электромагнитного и слабого взаимодействий, известных как электрослабое взаимодействие. Она также содержит описание сильного взаимодействия — силы, которая связывает протоны и нейтроны в атомных ядрах. Последняя оставшаяся сила — гравитация — не является частью Стандартной модели.

Разработка теории электрослабого взаимодействия началась в 1961 году, в год смерти Шрёдингера. Тогда физик Шелдон Ли Глэшоу предположил, что электромагнитное и слабое взаимодействия могут быть объединены в рамках одной теории, в которой взаимодействие между частицами осуществляется посредством обмена четырьмя типами бозонов (переносчиков взаимодействия): фотоном, двумя заряженными бозонами, называемыми W+ и W-, отвечающими за радиоактивный бета-распад, и четвертым бозоном, названным позднее Z0, отвечающим за слабые нейтральные токи. На тот момент еще не был открыт четвертый тип взаимодействия между двумя частицами, имеющими одинаковый заряд. Лагранжиан (функция, описывающая состояние динамической системы), который использовал Глэшоу, был не совсем корректен, но идея о существовании четырех обменных частиц оказалась точна, «как в аптеке».

Однако при объединении электромагнитного и слабого взаимодействий возникает серьезная проблема. Дело в том, что две эти силы имеют совершенно разные радиусы действия и константы связи. Электромагнетизм действует на огромных расстояниях. Доказательством тому служит наблюдаемый с Земли свет от далеких звезд, находящихся за триллионы километров от нас. Слабое взаимодействие, в отличие от электромагнитного, действует только на атомном масштабе. Кроме того, на субатомном уровне электромагнитное взаимодействие примерно в десять миллионов раз сильнее, чем слабое. Если на ранних этапах существования Вселенной эти силы были одним целым, то почему они кажутся настолько различными сегодня?

Как оказалось, свойства бозонов, которыми обмениваются частицы материи, постоянно испуская и поглощая их, определяют радиус и силу взаимодействия. Безмассовые бозоны, например фотоны, обеспечивают заметное взаимодействие на больших расстояниях. Тяжелые бозоны, такие как частицы-переносчики W-и Z-бозоны, создают относительно слабое короткодействующее взаимодействие. Следовательно, объяснение сегодняшнего несоответствия между электромагнитным и слабым взаимодействиями сводится к пониманию того, как W- и Z-бозоны приобретают массу.

Для этого был придуман механизм Хиггса — гениальный способ, объясняющий, как по мере остывания Вселенной с момента Большого взрыва большинство типов частиц приобретали массу, а фотон остался безмассовым. Механизм, предложенный в 1964 году несколькими группами исследователей независимо друг от друга (одну группу составляли Питер Хиггс, Франсуа Энглер (нобелевский лауреат совместно с Хиггсом) и Роберт Браут, а другую — Джералд Гуралиик, Карл Ричард Хаген и Томас Киббл) предполагает, что вся ранняя Вселенная была заполнена полем с определенным типом калибровочной симметрии. Спонтанное нарушение этой симметрии, которое сопровождалось снижением температуры, наделило большинство частиц массой, оставив фотоны безмассовыми.