К середине 1970-х годов физики буквально вгрызались в статьи и книги, описывающие теорию Калуцы — Клейна в высших измерениях, в надежде понять, как с ней работать. Учебник по общей теории относительности с предисловием Эйнштейна, написанный Бергманном в 1940 году, помог теоретическому сообществу освежить в памяти методы работы с более чем четырьмя измерениями. Старая идея компактификации, предложенная Оскаром Клейном (о том, что дополнительные измерения настолько плотно свернуты, что их нельзя увидеть), переживала возрождение. Теоретики нашли способы свернуть шесть дополнительных измерений в крошечные, плотно упакованные, как клубки ниток, пространства. Математики Эудженио Калаби и Шинтан Яу разработали схему классификации таких скрученных пространств, называемых теперь многообразиями Калаби — Яу.
Ажиотаж в физическом сообществе достиг накала в 1975 году, когда Джон Шварц и французский физик Жоэль Шерк предложили способ объяснения гравитации при помощи суперсимметрии. Они показали, как гравитоны — гипотетические бозоны — переносчики гравитационного взаимодействия — естественным образом возникают в их теории, если применить методы суперсимметрии к другим типам частиц. Гравитация, утверждали исследователи, оказывалась, таким образом, естественным следствием союза между бозонами и фермионами. Пожените эти два типа элементарных частиц, и от их брака родятся гравитоны.
Многие ученые, например французские теоретики Эжен Креммер, Бернар Джулиа и Жоэль Шерк из Высшей нормальной школы в Париже, голландский физик Бернар де Вит совместно с немецким физиком Херманном Николаи, научная группа голландского физика Питера ван Ньювенхейзена из Университета штата Нью-Йорк в Стоуни-Брук применили суперсимметрию к стандартной квантовой теории поля (не используя струны). Такой подход был назван супергравитацией. Креммер, Джулиа и Шерк показали, как такая теория может быть идеально размещена в одиннадцатимерном пространстве-времени[20], где лишние семь измерений сворачивались. Несмотря на многообещающее начало, супергравитация столкнулась с проблемами при описании определенных аспектов мира частиц.
Объединившись с британским физиком Майклом Грином, Шварц продолжил исследования свойств суперструн. В 1984 году Грин и Шварц объявили, что им удалось создать десятимерную модель, которая свободна от аномалий (технических математических дефектов). Кроме того, в отличие от КЭД, электрослабой теории и других стандартных квантово-полевых теорий, суперструнные теории поля приводят к конечным значениям различных физических величин и поэтому не требуют сокращения бесконечных выражений путем перенормировки. Полученные ими результаты, которые сразу окрестили «суперструнной революцией», давали множество поводов для радости. Возможно, с помощью суперструн, думали многие физики, удастся закончить поиски единой теории поля, начатые Эйнштейном.
Подобно тому как Эйнштейн, Шрёдингер и прочие ученые показали, что существует множество способов расширить общую теорию относительности, Грин, Шварц и другие исследователи, такие как блестящий теоретик Эдвард Виттен из Института перспективных исследований в Принстоне, который доказал ключевые теоремы новой теории, разработали множество типов теории суперструн. На самом деле выбор был настолько большой, что просто глаза разбегались. Теория суперструн вскоре стала лабиринтом с бесчисленным множеством возможных маршрутов. Но какой из них будет той самой нитью Ариадны, которая приведет к единой всеобъемлющей теории природы?
На конференции в 1995 году в Калифорнии Виттен провозгласил начало Второй суперструнной революции. На этот раз теория, помимо струн, включала новые объекты различной размерности — мембраны[21]. Он назвал новый подход М-теорией, туманно выразившись в том смысле, что буква «М» может означать как «мембрану», так и «магию». М-теория объединила несколько разных типов теории струн, а также несколько теорий супергравитации в едином подходе. Одним из новшеств, наученных в конце 1990-х годов такими физиками, как Ним Аркани-Хамед, Савас Димопулос, Георгий Двали, Лиза Рэндалл, Раман Сундрум и другими, была идея о том, что одно из дополнительных измерений может быть «большим» (то есть немикроскопическим), но недоступным для всех типов полей, кроме гравитонов. Это объясняет, почему гравитация гораздо слабее, чем другие силы природы.
20
В работе также было показано, что одиннадцать — это максимально возможное количество измерений. —
21
Подобные объекты называются