Выбрать главу

То же касается и нашей жизни: если мы находимся только в одной области, наши жизни не столь интересны, как могли бы быть, если бы мы жили на границе между различными областями, где на нас воздействует больше факторов и, следовательно, исход неясен.

Естественные науки интересуются либо порядком, либо хаосом; либо ньютоновской обратимостью, либо термодинамической необратимостью; либо простотой, либо сложностью.

Исследование запутанности приняло свою настоящую форму, когда Бернардо Хуберман и Тэд Хогг в 1986 году указали: сложное находится как раз на полпути между хаосом и порядком. Через несколько лет Крис Лэнгтон, Джеймс Кратчфилд и другие смогли показать, что все интересное происходит тогда и там, где порядок встречается с хаосом.

Запутанность вырастает на краю хаоса.

В конечном итоге именно поэтому знания простых уравнений и примеров из школьных учебников недостаточно. Даже если мы знаем формулы для мира, из формул мы не можем постичь, каков мир. Даже если мы сведем многообразный мир к короткому описанию, мы никогда не будем в состоянии реконструировать этот мир из своего описания.

П.В. Андерсон добавил, как мы уже знаем: «Способность свести все к простым фундаментальным законам не подразумевает способности начать с этих законов и реконструировать Вселенную».

Но именно это мы сознательно пытаемся сделать с искусственными жизнями, которые мы проживаем в своей технологической цивилизации.

Глава 15. Нелинейная линия

В 1877 году, когда планета Марс находилась необычно близко к Земле, всего на расстоянии 60 миллионов километров, итальянский астроном Джованни Скиапарелли объявил, что он открыл каналы — canali — на поверхности соседа Земли. Эти каналы представляли собой колоссальную систему соединенных друг с другом структур, покрывавших всю поверхность Марса. Разглядеть их очень сложно, так как возмущения в земной атмосфере значительно затрудняют изучение поверхностей планет. Фотографировать также невозможно: атмосферные возмущения означают, что образ Марса в окуляре телескопа оказывается полностью смазанным. Но Скиапарелли потом провел много лет, нанося на карту широкую систему соединенных друг с другом линий на поверхности Марса.

В 1892 году, когда Скиапарелли сообщил, что ухудшающееся зрение заставляет его прекратить исследования, исключительно богатый американский дипломат Персиваль Лоуэлл решил построить обсерваторию в той области, где атмосферные возмущения очень низки — Фрагстафф, Аризона — чтобы продолжить изучение каналов.

Изучения планет Персиваля Лоуэлла оказались очень важными, и не в последнюю очередь потому, что он начал поиски девятой и самой удаленной планеты Солнечной системы. Его поиски увенчались успехом в 1930 году, когда последователь Лоуэлла в обсерватории, Клайд Томбо, открыл планету, которая была названа Плутоном — не только в честь бога царства смерти, но и потому, что ее название начиналось с инициалов Лоуэлла.

Но Лоуэлла больше всего занимало изучение марсианских каналов, которое он и продолжал до своей смерти в 1916 году. Лоуэлл полагал, что ему удалось увидеть широкую систему прямых каналов, соединявших темные участки, разбросанные по поверхности планеты. Полагали, что эта замысловатая система прямых линий составляла ирригационную систему планеты, которая собирала воду с марсианских ледовых полюсов и доставляла ее в сухие области поблизости от экватора. Марс — это совершенно точно сухая планета, так что жизни приходилось добывать воду с полюсов, которые, как и полюса Земли, покрыты вечным снегом.

Много лет спустя американский астроном и научный писатель Карл Саган описывал это так: «Поворотным пунктом всех споров было то, что каналы были прямые, а некоторые из них проходили в виде огромных кругов на протяжении тысяч миль. Подобные геометрические конфигурации, как полагал Лоуэлл, не могли быть результатом геологических процессов. Линии были слишком прямыми. Они могли быть только продуктом интеллекта».

Следовательно, спорные заключения Лоуэлла были такими: Марс не только являлся домом для живых существ, но еще и полностью цивилизованной планетой, жизнь на которой регулировалась таким образом, что скудная влага могла быть распределена по всей ее поверхности.

Обсуждение марсианских каналов велось в течение десятилетий, и только исследование его поверхности с помощью зондов позволило с полной ясностью понять: никаких прямых каналов на Марсе нет. Есть только сухие русла рек — остатки той эпохи, когда на Марсе действительно была вода. Но они вовсе не прямые, а искривленные и неправильной формы, точно такие же, как и реки на Земле. Это результат геологической активности, который можно объяснить и без привлечения идей разумного вмешательства. Более того, они слишком малы для того, чтобы быть видимыми в телескопе Лоуэлла.

То, что видел Лоуэлл, было иллюзией. Не было ни каналов, ни прямых линий: наш глаз так привык видеть определенные модели, что хочет видеть их даже там, где их нет. Все беспорядочные пятна на поверхности Марса, которые можно было разглядеть через атмосферную дымку, истолковывались как прямые линии — хотя линий там не было.

Лоуэлл видел несуществующее: рисунки, которые на самом деле были только случайными и рассеянными пятнами.

Как отмечал Карл Саган: «Лоуэлл всегда говорил, что упорядоченность каналов является безошибочным знаком их интеллектуального происхождения. И это действительно так. Неразрешенным остался только один вопрос: с какой стороны телескопа находился этот интеллект».

В природе практически нет прямых линий. В то время как человеческая цивилизация изобилует прямыми линиями и ровными углами, а также круглыми формами, набор форм в естественной природе не включает в себя прямых линий.

Существует множество природных форм, которые при определенном желании могут представляться нам как правильные — но только до тех пор, пока мы к ним внимательно не присмотримся. Деревья растут ровно вверх, но нам придется сделать довольно большое допущение, если мы захотим признать их идеально прямыми и ровными (даже если не будем обращать внимания на ветви): они искривленные и узловатые, с грубой корой, а их стволы кверху сужаются. Аналогично ни одна травинка не будет идеально ровной, как и спина ни одного животного. Прямые линии можно увидеть в снежинках и кристаллах — но это применимо только к очень небольшим расстояниям. Реки и побережья имеют неправильную форму, горные гряды зубчатые, а облака исключительно неровные.

Да, линия горизонта выглядит ровной — но это только потому, что мы видим только ее небольшую часть. Если мы посмотрим на более протяженную линию горизонта (к примеру, с космического корабля), то мы обнаружим, что Земля вовсе не плоская, а круглая. Если мы посмотрим с более близкого расстояния (с помощью телескопа), то увидим, что прямой горизонт состоит из бесчисленных маленьких гребней, которые наш глаз выравнивает в прямую линию.

Лучи света движутся по прямой — но мы не можем их видеть. Если бы мы посмотрели прямо на луч солнца, то увидели бы только точку. Если бы мы посмотрели на него со стороны, то увидели бы его только в том случае, когда бы он рассеивался частицами дыма или пыли в воздухе. Если более детально исследовать эти освещенные частицы, то мы бы увидели, что они представляют собой не ровную линию, а набор отдельных точек.

Все формы, которые мы изучаем на уроках геометрии, в природе отсутствуют: прямая линия, прямой угол, прямоугольный треугольник. Мы не сможем их обнаружить, даже если на первый взгляд кажется, что мы их видим. За исключением прямолинейности кристаллов, круг — это единственная простая геометрическая фигура, которую мы можем обнаружить в природе в чистой форме: ее мы видим в небе в виде Солнца или полной Луны — далеко-далеко.

Природа использует совсем не тот геометрический язык, который преподается в школе. Этим способом описания геометрических форм мы обязаны древним грекам.

Капля дождя, которая спускается с горы, не движется по прямой линии. Разумеется, с теоретической точки зрения так и происходит, так как капля притягивается гравитацией. Но на Земле существует не только гравитация. Есть еще и поверхность Земли — а она очень неровная. Поэтому капля на своем пути вниз с горы будет двигаться не по прямой. В каждой точке своего пути ей придется определять, какое направление соответствует направлению «вниз» — и окажется, что вниз — это не всегда прямо. На пути может оказаться камешек или выпуклость, которая сделает путь капли не ровным, а немного зигзагообразным. Путь капли будет отражать местные условия в каждой точке ее пути вниз. Дождевые капли не раздумывают, куда идти, не разрабатывают маршрут, а затем им следуют. В каждой точке пути капли движутся по направлению вниз.