Выбрать главу

Это простая, но очень глубокая идея. И она ведет к пониманию того, что логическая система никогда не сможет доказать свою последовательность. Истина или правильность логической структуры или языка никогда не может быть доказана изнутри. Вам нужно находиться вне системы и сказать: «Она последовательна. Она цельная». Последовательность и свобода от противоречий никогда не могут быть доказаны изнутри системы.

Математик Эндрю Ходжес выразил это так: «Особое утверждение Геделя заключалось в том, что так как это невозможно доказать, то в определенном смысле это правда. Но чтобы сказать, что это «правда», необходим наблюдатель, который мог бы взглянуть на систему со стороны. Это невозможно показать, работая внутри аксиоматической системы».

Логика не может обойтись без человека.

«Люди часто воспринимают теорему Геделя как нечто негативное», — писал британский математик Роджер Пенроуз в 1988 году. Осознание Геделя обычно воспринимается как знак всего, чего не может сделать человек. Или, как об этом пишет датская философская литература, она воспринимается как аксиома бессилия. И на самом деле, доказательство Геделя является также и доказательством бессилия. Но не бессилия человека — а бессилия логики.

Мы никогда не сможем избежать необходимости в собственной силе суждений. Гедель доказал, что люди знают больше, чем они могут узнать оттуда, откуда получают знания. Способность понимания сути достигает гораздо большего, нежели любое логическое построение. Теорема Геделя является беспрецедентным вкладом в креативность человеческого мозга.

Но исторические обстоятельства сложились так, что открытие Геделя напоминало о заключениях предыдущей эпохи больше, чем знаменовало собой открытие новой.

Программа Гильберта была не более чем математическим выражением самонадеянности, которая влияла на философию науки на рубеже столетия. Позитивизм Конта осуждал любое знание, которое невозможно получить на основании опыта или логической дедукции. В Вене 20-х годов прошлого века эта философия была усовершенствована и отточена до направления, которое известно, как логический позитивизм. Круг философов и математиков отточили требования позитивизма до требования, что мы должны иметь возможность проверить знание, прежде чем принимать его на веру. Мы должны иметь возможность доказать, что оно верно.

Следствием этого усовершенствования стала смерть позитивизма. Выяснилось, что он противоречил с тем, как естественные науки использовали индукцию, при которой общее знание может быть получено из серии наблюдений. В конце концов никто никогда не знает, нарушит ли следующее явление, которое мы наблюдаем, закон, который только недавно стал известен.

Подобный крах позитивизма не вызвал удивления у Геделя, который посещал встречи в венском кругу: вся его математическая философия была вдохновлена Кантом, который подчёркивал, что мы не можем доказать все, что знаем, но должны принять: оно базируется на основаниях, которые не могут быть доказаны — априорных категориях.

Но Гедель был не просто оппонентом позитивизма. Он был платонистом. Его взгляды на математические числа были частично заимствованы от греческого философа, который вывел философию идей около 400 года до н. э. Идея Платона заключалась в том, что за воспринимаемой нами с помощью органов чувств реальностью лежит еще более реальная реальность, состоящая из фундаментальных принципов, идей, для которых реальность, которую мы воспринимаем, является не более чем подобием. Но эта реальность существует, осознаем мы это или нет.

Эта точка зрения существенно контрастировала с мнением большинства математиков в начале 20 века (но сегодня она получила гораздо более широкое распространение). Давид Гильберт полагал, что математика является своеобразной игрой, которая доказывает свою правильность через формальную последовательность. Бертран Рассел воспринимал математику просто как один из видов прикладной логики. Другие, к примеру, датчанин Лютцен Брауэр, полагали, что математические величины представляли собой усовершенствованную человеческую практику — то есть нашу интуицию.

Но Гедель полагал, что реальность этих величин не имеет ничего общего с тем, можем ли мы доказать их последовательность или то, что они могут быть доказаны логически или применены на практике. Целые числа или другие математические величины существовали «там» задолго до того, как мы осознали их существование.

Эти взгляды Гедель сохранял с середины 20-х годов и на протяжении 30-х годов, когда он получал глубокие результаты в математической логике — один за другим. Он полагал, что эти взгляды являются жизненно важными для его научных достижений. Однако он их не обсуждал. Он не публиковал свои философские воззрения, даже несмотря на то, что философия являлась одним из главных интересов его жизни. Только в 1944 году его взгляды получили широкую огласку — в юбилейном сборнике статей в честь Бертрана Рассела. Математик и философ Соломон Феферман говорил о его статье так: «Гильберт умер в 1943 году, за год до того, как появился Гедель».

«В процессе подготовки вступительной главы по Геделю для предстоящего полного издания его работ я был поражен огромным контрастом, — писал Феферман, главный редактор Собрания работ Геделя, — между глубокими платоновскими убеждениями, которые Гедель сохранял относительно объективных основ математики и особой осторожностью, которую он проявлял в раскрытии этих убеждений».

Можно задать вопрос, чего стоило ему это молчание. Гедель не делился с людьми источником своих озарений. Он напрямую не раскрывал своих верований о мире. Он говорил другим только то, что мог доказать.

Гедель вел очень одинокую жизнь, доверял очень немногим людям и несколько раз лечился в санаториях по поводу депрессии и переутомления. Он был сдержанным и подозрительным — не до такой степени, чтобы это обеспокоило докторов — несмотря на то, что был озабочен своим здоровьем. Его депрессия усугублялась и в 70-е годы превратилась в паранойю с ее классическим синдромом страха отравления. В 1977 году ситуация стала критической — его жена попала в больницу и больше не могла за ним ухаживать. Он не открывал дверь медицинскому персоналу и 14 января 1978 умер. Его тело нашли в позе эмбриона. «Недоедание и истощение», которые стали результатом «нарушений психики» — такой была официальная причина смерти.

Он внес самый большой вклад в то, чтобы человеческий мозг вышел за пределы формально доказуемого, который когда-либо появлялся в области логического мышления. Но это воспринималось как утверждение бессилия, техническая особенность — с исторической точки зрения — локализованное восстание против чрезмерной веры в науку.

Сам Курт Гедель признавал следующую формулировку, которая пришла к нам от математического логика Хао Ванга: «В философии Геделю так и не удалось найти то, что он искал: новый взгляд на мир, его базовые составляющие и правила, по которым они складываются. Несколько философов, особенно Платон и Декарт, утверждают, что в определенные моменты жизни у них возникал интуитивный взгляд на подобные вещи, отличный от нашего повседневного взгляда на мир».

Безусловно, у Геделя тоже были подобные откровения. Но он не осмеливался их обсуждать. Он осмеливался открывать нам только те из них, которые мог однозначно толковать. Он осмеливался делиться своими откровениями только в том виде, какими они представали снаружи — с точки зрения всего остального общества.

Чудо математики состоит в том, что этого было достаточно, чтобы и другие могли увидеть свет.

Весной 1935 года 22-летний Алан Тьюринг, который только что закончил докторат, посещал лекции, которые проводил математик М.Х.А. Ньюман в Кембридже, Англия. Предметом лекций были фундаментальные задачи математики. Отправная точка — программа Гильберта. На лекциях говорилось, что Гедель ясно и четко показал: центральные элементы программы Гильберта не выдерживают критики. Но оставался один вопрос, который не удалось решить Геделю: так называемая проблема разрешимости — Entscheidungsproblem.

Эта самая Entscheidungsproblem рассматривается по-другому: если у нас есть математическая система, которая говорит о частном предположении — можем ли мы решить, возможно ли вывести это предположение из системы? Гедель показал, что в любой закрытой системе возникнут вопросы, на которые не будет ответов — правдивые утверждения, которые не могут быть выведены. И это было критично, так как показывало, что мечта раз и навсегда уладить все в математике является недостижимой.