Выбрать главу

Лишь в конце XVIII в. произошел первый важный прорыв в практическом использовании накопленных ранее абстрактных представлений об иммунитете. Им стала знаменитая работа англичанина Эдварда Дженнера. Много лет он тщательно изучал разные случаи заболевания человека «коровьей» оспой. В конечном итоге все это навело Дженнера на мысль о возможности практического использования коровьей оспы для защиты человека от такого страшного заболевания, как натуральная оспа. Будучи убежденным, что такая форма искусственного заражения человека — безвредный способ предотвращения тяжелой болезни, которой является оспа, он в 1796 г. провел первый успешный эксперимент на человеке. Результат превзошел все ожидания! Подробнее мы еще поговорим об этом, когда речь пойдет о вакцинах. Но для справедливости заметим, что в Китае и Индии прививку оспы практиковали еще за несколько столетий до ее введения в Европе. Болячками переболевшего оспой человека расцарапывали кожу здорового человека, который обычно после этого переносил инфекцию в слабой, не смертельной форме, после чего выздоравливал и оставался устойчивым к последующим заражениям оспой.

Однако существовавшие эмпирические знания и даже успех Дженнера, за который он получил довольно большую денежную премию от Британского парламента, долгое время не находили своего полного объяснения, и природа иммунитета оставалась загадкой за семью печатями.

Спустя почти 100 лет открытый Э. Дженнером факт лег в основу дальнейших экспериментов Л. Пастера на куриной холере, завершившихся формулировкой принципа профилактики от инфекционных заболеваний — принцип иммунизации ослабленными или убитыми возбудителями (1881 г.). Чуть позднее (в 1890 г.) Эмиль фон Беринг сообщил, что после введения в организм животного не целых дифтерийных бактерий, а всего лишь некоего токсина, выделенного из них, в крови появляется нечто, способное нейтрализовать или разрушать токсин и тем самым предотвращать само заболевание, вызываемое целой бактерией. Более того, оказалось, что приготовленные из крови таких животных препараты (их назвали сыворотками) исцеляли детей, уже больных дифтерией. Вещество, которое нейтрализовало токсин и появлялось в крови только в его присутствии, получило название антитоксина. В дальнейшем это и подобные ему вещества стали называть общим термином — антитела. А тот агент, который вызывает образование этих антител, стали называть антигеном. За эти работы Эмиль фон Беринг был удостоен в 1901 г. Нобелевской премии по физиологии и медицине. (Хотелось бы отметить, что термин «антиген» сегодня кажется крайне неудачным, поскольку по смыслу он может быть применен к некоему агенту, направленному против гена. Но термин «прижился», и, по всей видимости, никуда теперь от него не уйти. Еще наши предки подметили: Multa sunt in moribus dissentanea, multa sine ratione — в обычаях много несообразного, много неразумного.) В дальнейшем П. Эрлих разработал на этой базе теорию гуморального иммунитета (т. е. иммунитета, обеспечиваемого антителами, которые, продвигаясь по жидким внутренним средам организма, такими как кровь и лимфа (от лат. humor — жидкость), поражают чужеродные тела на любом расстоянии от лимфоцита, который их производит.

Если с антигеном все было более или менее ясно почти с самого начала, то, чтобы понять природу антител, потребовалось еще более полувека, пока Арне Тизелиус (Нобелевская премия по химии за 1948 г.) не показал, что это всего лишь обычные белки, но с очень большим молекулярным весом. Химическую структуру антител расшифровали Джералд Морис Эдельман (США) и Родни Роберт Портер (Великобритания), за что они оба получили Нобелевскую премию в 1972 г. В конечном итоге было установлено, что каждое антитело (они еще называются иммуноглобулинами) состоит из четырех белков — двух легких цепей и двух тяжелых цепей. Такая структура в электронном микроскопе по своему виду напоминает «рогатку» (рис. 2). Часть молекулы антитела, которая связывается с антигеном, очень изменчива, поэтому ее называют вариабельной. Эта область содержится на самом кончике антитела, поэтому защитную молекулу иногда сравнивают с пинцетом, ухватывающим с помощью острых концов мельчайшие детали самого замысловатого часового механизма. Активный центр распознает в молекуле антигена небольшие участки, состоящие обычно из 4–8 аминокислот. Эти участки антигена подходят к структуре антитела, «как ключ к замку». «Родственные объятия» антител с антигеном (микробом) редко кончаются для последнего благополучно. Если даже антитела не могут с ним справиться самостоятельно, на помощь им придут другие компоненты, и в первую очередь специальные «клетки-пожиратели».