ИГРАЕМ В БИЛЬЯРД
ИГРАЕМ В БИЛЬЯРДПредыдущую главу мы закончили достаточно сильным утверждением о том, что качество энергии определяется ее информативностью, то есть количеством информации, затраченным в процессе преобразования энергии из одной формы в другую. В этой главе мы постараемся показать, что так оно и есть на самом деле. Это, в свою очередь, позволит нам утверждать, что информация суть физическая величина, такая же, как, например, масса или сила электрического тока.Изучение природы всегда связано с построением различных моделей. В данном случае наиболее удобной моделью, которая позволит нам понять связь между информацией и другими физическими величинами, а также прояснит вопрос о качестве энергии, будет бильярдный стол. Надеемся, что все наши читатели достаточно хорошо представляют себе, как выглядит бильярдный стол с шестнадцатью шарами. Поэтому мы не станем его здесь описывать, а условимся лишь о тех допущениях, которые необходимо сделать, чтобы он мог служить нам в качестве модели. Собственно говоря, нам понадобится одно-единственное допущение. Будем считать, что шары движутся по поверхности стола без трения, в том числе и о воздух. Будем считать также, что шары и борта стола идеально упругие. При таких условиях сумма кинетических энергий шаров в любые моменты времени будет одной и той же и начавшееся на столе движение никогда не прекратится. На некоторое время откажемся также от луз, а затем вернем их на свое место.А теперь — внимание! Составили шары в пирамидку, прицелились, ударили и смотрим, что будет происходить дальше. Для начала присмотримся к одному какому-нибудь шару. Вот он отскочил от пирамидки, ударился о борт, отскочил от борта, ударился о противоположный борт, снова отскочил, ударился о встречный шар, изменил направление своего движения, снова ударился о борт и так далее. Предположим, что мы наблюдаем за поведением шара после удара достаточно долго, скажем, полчаса. И зададим себе главный вопрос: можно ли каким-то образом связать исходное положение шара в пирамидке с тем положением, которое он занимает на столе в некоторый данный момент времени (у нас — через полчаса)?Конечно, если все время следить за движением шара или фиксировать это движение с помощью кинокамеры, можно восстановить всю его траекторию, и это даст возможность утверждать, что положение шара в данный момент времени в данном месте стола известным образом зависит от его положения в пирамидке в начальный момент. Однако согласитесь с тем, что достаточно нам хотя бы на несколько минут потерять бильярдный стол из виду, и мы не сможем ничего сказать о расположении шаров. Нет и не может быть никакой теории, которая позволила бы с заданной точностью (пусть даже совсем невысокой) предсказать положение шара через определенное время после удара, если даже нам известны направление и скорость битка или кия, наносящего первый удар.Объясняется это тем, что хотя, казалось бы, движения шаров, как катящихся по поверхности стола, так и отскакивающих от бортов и друг от друга, подчиняются простейшим законам механики, на самом деле точные значения углов, под которыми шары отскакивают от бортов и друг от друга, зависят от микроскопической структуры материала бортов и материала самих шаров, поверхность которых гладкая только на первый взгляд. Поверхность стола также имеет свою микроструктуру. Благодаря всему этому катящиеся шары на самом деле следуют достаточно сложным траекториям.Сложность траекторий шаров приводит к тому, что по прошествии достаточно большого количества времени после исходного удара у нас не будет никаких оснований для выделения какой-либо, даже достаточно большой области поверхности стола, в которой преимущественно должен оказаться данный шар. С совершенно одинаковыми основаниями мы можем указать любую область поверхности стола как возможное местоположение наблюдаемого шара.Здесь необходимо сделать очень важную оговорку. Мы значительно облегчили бы себе труд, если бы сразу сказали, что величина угла, под которым шары отскакивают от бортов или друг от друга, всегда содержит случайную составляющую и в результате этого по истечении достаточно большого времени после начального удара каждый шар с равной вероятностью может наблюдаться в любой области поверхности стола. Более того, у читателя, живущего в 80-х годах XX столетия, не возникло бы никаких сомнений в том, что он понимает, о чем идет речь.Однако мы потому выбрали в качестве модели бильярдный стол, чтобы рассмотреть основные закономерности поведения шаров без привлечения понятий случайной величины и вероятности. Независимо от того, имеет ли наш читатель опыт игры на бильярде или нет, он достаточно хорошо может себе представить, как ведут или как должны вести себя шары. Именно из наблюдения за их поведением он сделает вывод, что если наблюдать за некоторым шаром в течение достаточно долгого времени, то можно будет убедиться в том, что в конце концов на поверхности бильярдного стола не останется ни одной, даже самой маленькой области, где бы шар не побывал хоть однажды. А это эквивалентно утверждению о том, что у нас нет никаких оснований выделить какую-либо область стола и считать ее преимущественным местом нахождения данного шара.Суммируя сказанное, будем утверждать, что по прошествии достаточно большого времени (что значит «достаточно большого», предоставляем судить читателю) после исходного удара мы не знаем и принципиально не можем знать, где находится каждый шар. Чтобы у читателя не создалось впечатления, что мы уж очень далеко уклонились от главной темы, скажем иначе: у нас нет информации о положении шара. Заметим, однако, что сам шар прекрасно «знает», где он находится. Если вам почему-либо не нравится, что мы наделяем шар свойством «знать», можно сказать и иначе. Если поместить наблюдателя внутрь бильярдного шара и снабдить его соответствующими измерительными приборами, то в любой момент времени он будет точно знать, где находится, более того — он сможет связать свое местоположение со всеми предыдущими. Отсюда вывод: можно измерить угол, под которым отскакивает шар, но нельзя его предсказать. Нельзя предсказать, поскольку отсутствуют законы, в точности управляющие движением шаров.