ВЕЧНОЕ ДВИЖЕНИЕ!
Повторяем еще раз, все это азбука термодинамики, и мы тратим на это время только потому, что в последнее время в литературе начали проскальзывать следующие рассуждения. Представим еще раз цепочку стержней, холодные контакты которых расположены на улице, а горячие — в комнате. Авторы тепловых насосов рассуждают так. При протекании тока горячие контакты нагреваются, а холодные охлаждаются. Охлаждаясь, холодные контакты отнимают определенное количество тепла от окружающей среды. Это количество тепла «перекачивается» к горячим контактам, а от них — в комнату.Все это опять-таки верно, но при одном совершенно обязательном условии. Необходимо, чтобы количество затраченной при этом электрической энергии было бы в пределе равно, а на самом деле с учетом необратимости процессов больше количества перекачанного таким образом тепла. А вот в статье И. Когана «От чугунного радиатора до теплового насоса», помещенной в десятом номере журнала «Наука и жизнь» за 1973 год, написано следующее:«Энергетические затраты на «перекачку» тепла невелики. Расчеты показывают, что при температуре + 17° С в комнате и +7° С на улице на один киловатт-час электрической энергии можно получить почти 30 киловатт-часов тепла».Мы, правда, не знаем, что точно имел в виду И. Коган под словом «тепло», но если он имел в виду то же самое, что обычно понимается в термодинамике под словами «количество тепла», то получается совершенно изумительная картина. Даже с помощью «плохих» преобразователей 30 киловатт избыточного тепла можно преобразовать, скажем, в 2 киловатта электрической энергии. Из них один киловатт затрачивается на работу теплового насоса, а второй — на создание вечного движения. Описание вечного двигателя в 70-х годах нашего столетия, согласитесь, — это здорово!Ошибка этого и подобных ему рассуждений кроется в следующем. Представим себе две одинаковые комнаты и цепочку стрежней, расположенных так, что все холодные спаи помещены в одной комнате, а горячие — в другой. При прохождении тока одна комната будет нагреваться, а вторая — охлаждаться. Количество затрачен ной электрической энергии окажется в точности равным сумме энергии, необходимой на нагревание одной комнаты, и энергии, необходимой для охлаждения второй комнаты. Пусть, затратив определенное количество энергии, мы достигли равновесного состояния, характеризуемого, например, температурой 4-20° С в одной комнате и —20° С в другой. Теперь вместо второй комнаты вынесем холодные контакты на улицу. Пусть температура окружающего воздуха на улице равна —10° С и благо даря хорошему теплообмену температура холодных спаев поддерживается при той же температуре. Тогда при тех же затратах электрической энергии температура в комнате, где расположены горячие контакты, установится + 30° С (напомним, что количество энергии пропорционально разности температур).Такое кажущееся увеличение температуры и является причиной не только для рассуждений, подобных приведенному выше рассуждению И. Когана, но и для экспериментальных «подтверждений» теории тепловых насосов. Просто вынося холодные спаи на улицу, мы не затрачиваем дополнительной энергии на охлаждение холодной комнаты. Измерить же точно количество выделившегося тепла очень трудно из-за несовершенной теплоизоляции нагреваемых помещений.Мы должны твердо запомнить одно: электрические нагреватели и холодильники — это в принципе одно и то же. И в том и в другом случае, затрачивая одинаковое количество энергии, мы получаем одинаковую разность температур и, следовательно, одинаковое количество информации.В этой главе мы, кроме всего прочего, будем всякий раз подводить своеобразные итоги всему сказанному в книге. Поэтому, прощаясь сейчас не только с тепловыми насосами, но и вообще с термодинамическими системами, можно сказать следующее. Шенноновская мера количества информации справедлива для систем, рассматриваемых в классической физике, и, в частности, для термодинамических систем. В силу необратимости отдельных процессов в термодинамике количество информации, измеренное по Шеннону, всегда оказывается несколько меньше максимально возможного. Лишь в случае полной равновероятности микросостояний количество информации достигает максимума.