Выбрать главу

Вероятностный подход используется и при определении количества информации, представленной с помощью знаковых систем. Если рассматривать символы алфавита как множество возможных сообщений N, то количество информации, которое несет один знак алфавита, можно определить по формуле (1.1). При равновероятном появлении каждого знака алфавита в тексте сообщения для определения количества информации можно воспользоваться формулой (1.2).

Количество информации, которое несет один знак алфавита, тем больше, чем больше знаков входит в этот алфавит. Количество знаков, входящих в алфавит, называется мощностью алфавита. Количество информации (информационный объем), содержащееся в сообщении, закодированном с помощью знаковой системы и содержащем определенное количество знаков (символов), определяется с помощью формулы:

где V – информационный объем сообщения; / = log2N, информационный объем одного символа (знака); К – количество символов (знаков) в сообщении; N – мощность алфавита (количество знаков в алфавите).

Поясним вышесказанное в п. 1.2 на примерах.

Пример 1.1

Определим, какое количество информации можно получить после реализации одного из шести событий. Вероятность первого события составляет 0,15; второго – 0,25; третьего – 0,2; четвертого – 0,12; пятого – 0,12; шестого – 0,1, т. е. Р1 = 0,15; Р2 = 0,25; Р3 = 0,2; Р4 = 0,18; Р5 = 0,12; Р6 = 0,1.

Решение.

Для определения количества информации применим формулу (1.1)

Для вычисления этого выражения, содержащего логарифмы, воспользуемся сначала компьютерным калькулятором, а затем табличным процессором Microsoft (MS) Excel, входящим в интегрированный пакет программ MS Office ХР.

Для вычисления с помощью компьютерного калькулятора выполним следующие действия.

С помощью команды: [Кнопка Пуск – Программы – Стандартные – Калькулятор] запустим программу Калькулятор. После запуска программы выполним команду: [Вид – Инженерный] (рис. 1.3).

Рис. 1.3. Инженерный калькулятор

Кнопка log калькулятора производит вычисление десятичного (по основанию 10) логарифма отображаемого числа. Поскольку в нашем случае необходимо производить вычисления логарифмов по основанию 2, а данный калькулятор не позволяет этого делать, то необходимо воспользоваться известной формулой:

logbN = М · logaN,

где

В нашем случае соотношение примет вид: log2N = M log10N,

где

т. е log2N = 3,322 · log10N, и выражение для вычисления количества информации примет вид:

При вычислении на калькуляторе используем кнопки: +/- (изменение знака отображаемого числа),() (открывающие и закрывающие скобки), log (логарифм числа по основанию 10) и т. д. Результат вычисления показан на рис. 1.3. Таким образом, количество информации I = 2,52 бит.

Воспользуемся теперь табличным процессором MS Excel. Для запуска программы Excel выполним команду: [Кнопка Пуск – Программы – MS Office ХР – Microsoft Excel]. В ячейки А1, В1, С1, D1, E1, F1 открывшегося окна Excel запишем буквенные обозначения вероятностей Р1, Р2, P3, Р4, P5, P6 а в ячейку G1 – количество информации I, которое необходимо определить. Для написания нижних индексов у вероятностей Р1 ÷ P6 в ячейках А1, В1, С1, D1, E1, F1 выполним следующую команду: [Формат – Ячейки – Шрифт – Видоизменение (поставим флажок напротив нижнего индекса) ]. В ячейки А2, В2, С2, D2, Е2, F2 запишем соответствующие значения вероятностей.

После записи значений в ячейки необходимо установить в них формат числа. Для этого необходимо выполнить следующую команду: [Формат – Ячейки – Число – Числовой (устанавливаем число десятичных знаков, равное двум) ]. Устанавливаем в ячейке G2 тот же числовой формат. В ячейку G2 записываем выражение = – (A2*LOG(A2;2) + B2*LOG(B2;2) + C2*LOG(C2;2) + D2*LOG(D2;2) + E2*LOG(E2;2) + F2*LOG(F2;2) ). После нажатия на клавиатуре компьютера клавиши <Enter>, в ячейке G2 получим искомый результат – I = 2,52 бит (рис. 1.4).