Выбрать главу

Задача по соединению друг с другом нескольких интеграторов не была решена до 1931 года, когда профессор Массачусетского технологического института Вэнивар (имя Vannivar рифмуется со словом beaver — бобер) Буш (запомните это имя, его носитель является ключевым персонажем этой книги) сумел построить первый в мире аналоговый электромеханический компьютер. Он назвал свою машину дифференциальным анализатором. Она состояла из шести колесно-дисковых интеграторов, не слишком сильно отличавшихся от интеграторов лорда Кельвина, которые были связаны между собой посредством набора шестеренок, шкивов, валов, вращавшихся с помощью электродвигателей. Бушу помогло то, что он работал в Массачусетском технологическом институте, где вокруг было много специалистов, которые умели собирать и вытачивать сложные детали с большой точностью. В окончательном виде машина, которая была размером с небольшую спальню, могла решать уравнения с огромным числом (до восемнадцати) независимых переменных. В течение следующего десятилетия модификации дифференциального анализатора Буша были собраны в США: на Абердинском испытательном полигоне ВМС штата Мэриленд, в электротехнической школе Мура, в Университете Пенсильвании, а также в Манчестерском и Кембриджском университетах в Англии. Они оказались особенно полезными при составлении таблиц для артиллерийских стрельб, но главное — на них воспитывалось и обучалось новое поколение первооткрывателей компьютеров.

Машине Буша, однако, не суждено было стать важным шагом вперед в истории развития компьютеров, поскольку она была аналоговым устройством. На самом деле она оказалась последним образчиком аналогового компьютера, по крайней мере, в течение многих последующих десятилетий других не было предложено.

Новые подходы, технологии и теории начали появляться в 1937 году, ровно через сто лет после того, как Бэббидж впервые опубликовал свою статью об аналитической машине. Этот год стал “годом чудес” для компьютерной эры, и итогом его стало безоговорочное признание четырех основных свойств, в известном смысле взаимосвязанных, которые определили конструкцию современных компьютеров.

ЦИФРОВОЙ ПОДХОД. Фундаментальной чертой компьютерной революции было то, что в основу были положены цифровые, а не аналоговые компьютеры. Как мы скоро увидим, это произошло по многим причинам, в том числе из-за почти одновременных прорывов в теоретической логике, схемотехнике и технологии электронных двухпозиционных переключателей (работающих в режимах включить/выключить), что сделало более естественным цифровой, а не аналоговый подход. И только в 2010-х годах ученые-компьютерщики, стремясь промоделировать работу человеческого мозга, опять серьезно задумались о возрождении аналогового принципа работы компьютера.

БИНАРНОСТЬ. Мало того, что современные компьютеры стали цифровыми, но цифровая система, которую они используют, это двоичная система, то есть за основание взята двойка, что означает, что используются только цифры 0 и 1, а не все десять цифр нашей обычной десятичной системы. Как и многие математические понятия, двоичная система была впервые разработана Лейбницем в конце XVII века. В 1940-е годы становилось все более очевидным, что для выполнения логических операции с использованием схем, содержащих двухпозиционные переключатели, бинарная система подходила лучше, чем другие цифровые системы, в том числе десятичная.

ЭЛЕКТРОНИКА. В середине 1930-х годов британский инженер Томми Флауэрс разработал метод использования электронных ламп в электронных схемах в качестве двухпозиционных переключателей. До тех пор в схемах использовались механические и электромеханические переключатели, такие как пружинные электромагнитные реле, применявшиеся телефонными компаниями. Ранее электронные лампы в основном использовались для усиления сигналов, а не как двухтактные переключатели. При использовании электронных компонентов, таких как электронные лампы, а позже — транзисторов и микросхем, компьютеры могут работать в тысячи раз быстрее, чем машины, в которых имеются движущиеся электромеханические переключатели.