Выбрать главу

РИСУНОК 3-4 Диаграмма Герцшпрунга-Рассела (H-R), связывающая яркость звёзд с их массой и спектральным классом.

Да, рано или поздно это случится с Солнцем, как и со всеми другими звёздами главной последовательности. (Кстати, в этом простом наблюдении заключён значительный сюжетный потенциал. Если человечество жаждет прожить больше нескольких миллиардов лет (что, по общему признанию, побило бы все предыдущие рекорды продолжительности существования вида), то ему придётся расселиться за пределы этой Солнечной системы, поскольку расширение Солнца с переходом в статус красного гиганта испепелит все ближайшие к нему планеты.) Но конец синтеза водорода и расширение с превращением в красный гигант — это не конец истории звезды. Помните, что ядро продолжает становиться всё меньше и горячее. Когда оно становится достаточно горячим (порядка ста миллионов Кельвинов), может начаться новая термоядерная реакция, превращающая гелий в углерод и вновь перемещающая звезду влево (в сторону главной последовательности) на диаграмме Герцшпрунга-Рассела. Когда весь гелий израсходован, внешние слои опять расширяются, но ядро продолжает сжиматься. Когда ядро становится достаточно горячим, начинается ещё одна термоядерная реакция, «сжигающая» углерод с образованием кислорода, неона и магния.

Вы наблюдаете закономерность: старая звезда проходит через ряд последовательных стадий, используя элементы, полученные в результате предыдущих реакций ядерного синтеза, для создания всё более и более тяжёлых элементов. Как же они попадают в такие места, как влажный тропический лес Амазонки или ваш буфет? Оставайтесь с нами....

Этот процесс создания элементов со всё более и более увеличивающимися номерами может дойти лишь до этого предела: создание элементов тяжелее железа не подвластно термоядерному синтезу. В конце концов, у звезды заканчиваются источники ядерной энергии, и ядро продолжает сжиматься (и нагреваться ещё сильнее), а её внешние слои продолжают расширяться. Как правило, внешние слои оказываются полностью утраченными: либо постепенно, либо в результате более или менее бурных событий вроде взрывов, называемых «новыми звёздами», а ядро продолжает существовать как очень маленькая, горячая, плотная белая звезда под названием белый карлик. Для звезды с относительно небольшой массой (вроде нашего Солнца) с этого момента все дела по большому счёту идут под откос. В конце концов, звезда (которая раньше была ядром более крупной звезды) уже не может сжиматься дальше; её гравитационное притяжение не может преодолеть силы взаимного отталкивания атомов. Таким образом, размер стабилизируется, и звезда больше не производит новой тепловой энергии взамен той, что она излучает. Так что она очень медленно остывает и тускнеет, превращаясь в итоге в чёрного карлика.

Несколько более массивную звезду (свыше 1,4 массы Солнца) может ожидать более драматичный конец. Её гравитационное притяжение достаточно сильно, чтобы, по сути, вдавливать электроны в ядра атомов, из которых она состоит, превращая всю звезду в «нейтроний» — форму материи, состоящую из плотно упакованных нейтронов. Такая материя значительно плотнее, чем что-либо в нашем повседневном опыте; масса Солнца может быть сжата в сферу диаметром всего лишь десять или двадцать километров. Кроме того, ускорение вращения, возникающее при сжатии, оказывается доведённым до крайности. Нейтронная звезда совершает полный оборот за время порядка одной секунды, испуская короткопериодические всплески излучения, которые известны нам как пульсар.

Ещё более массивную звезду может ожидать самый драматичный конец из всех возможных. Она может схлопнуться до такой высокой плотности, что даже свет больше не сможет вырваться из неё, и станет чёрной дырой.

Нейтронные звёзды и чёрные дыры обладают множеством необычных свойств, но они имеют слишком опосредованное отношение к «обычному» созданию инопланетян, чтобы оправдывать слишком большие затраты времени на них здесь. Однако я расскажу о них чуть больше в последней главе. Такие экзотические возможности действительно скрывают в себе исключительный сюжетный потенциал (см., например, роман Роберта Л. Форварда «Яйцо Дракона» о жизни на нейтронной звезде), но развитие этого потенциала ставит задачи, выходящие далеко за рамки потребностей большинства писателей.

Между тем, есть ещё одна вещь, которую нам нужно сказать об эволюции звёзд. Описанные мною реакции ядерного синтеза не могут объяснить все наблюдаемые нами элементы и изотопы. Откуда же берутся остальные? Вспомните, что старые звёзды склонны сбрасывать свои внешние слои в космос. Это вещество вновь смешивается с межзвёздной средой, части которой могут собираться и создавать новые звёзды. Эти звёзды «второго (или более позднего) поколения», содержащие материал более ранних звезд, обладают важным отличием от звёзд «первого поколения». Звёзды первого поколения, когда нагревались в достаточной степени для поддержания термоядерных реакций, могли использовать в качестве сырья лишь водород и немного гелия, что ограничивало количество реакций, которые могли происходить. Звёзды более поздних поколений уже содержат примесь более тяжёлых элементов, которые были произведены предыдущими поколениями, и которые могут участвовать в новых видах реакций с образованием ядер, невозможных для звёзд первого поколения. Такие реакции «заполняют пробелы»; более того, в ходе некоторых из этих реакций образуются нейтроны, которые могут запускать новые реакции, приводящие к образованию новых изотопов, включая элементы тяжелее железа.