х ∈ х
то множество, которое вы построите из таких элементов, приведет к парадоксу, который, как вам известно, влечет противоречие26. Если говорить просто, то это означает, что в универсуме дискурса ничто не содержит всё27, и здесь вы снова обнаруживаете зияние, образующее субъекта. Субъект — это введение потери в реальность, но ничто не может ввести эту потерю, поскольку по своему статусу реальность максимально полна. Понятие потери — это следствие существования черты, которая является тем, что при внедрении определяемой вами буквы размещает — скажем так, а1, а2, а3 — места же являются пространствами для нехватки. [The notion of the loss is the effect afforded by the instance of the trait which is what, with the intervention of the letter you determine, places — say a1, a2, a3 — and the places are spaces, for a lack.] (Лакан 1970, с. 193)
Отметим сразу, что с того момента, как Лакан начинает «говорить просто», все становится совершенно неясным. Но самое главное, он не дает никакого обоснования для проведения возможной связи между парадоксами, принадлежащими основаниям математики, и «зиянием, образующим субъекта» в психоанализе. Не наводит ли это на мысль, что дело, скорее, в том, чтобы своей поверхностной эрудицией произвести впечатление на читателей?
Можно сделать заключение, что этот текст прекрасно иллюстрирует злоупотребления 2 и 3 нашего списка: Лакан демонстрирует неспециалистам свои познания в математической логике, но с математической точки зрения его изложение не носит ни педагогического, ни оригинального характера, а связь с психоанализом не подкреплена никаким обоснованием.
В других текстах даже как будто бы чисто «математическое» содержание лишено всякого смысла. Например, в статье, написанной в 1972 году, Лакан высказывает свою знаменитую максиму — «не существует сексуального отношения» — и выражает эту очевидную истину в своих прославленных «формулах сексуации»:
Все дальнейшее развитие можно удержать вокруг того, что я говорю о логической корреляции двух формул, которые, если их записать математически как · Fx и ∃x · Фx` выражает следующее28: первая — для всякого х удовлетворяется свойство Фх`, что можно отметить при помощи знака Т, служащего для обозначения значения истины. Если перевести все это на аналитический язык, практика которого как раз и состоит в создании смысла, то это «будет значить» то, что всякий субъект как таковой, ведь в этом-то и заключена ставка этого языка, вписывается в фаллическую функцию, чтобы ответить на отсутствие сексуального отношения (практика создания смысла или сути означает отсылку к этому отсутствию); вторая — в качестве исключения есть вариант, хорошо известный в математике (аргумент х = 0 в экспоненциальной функции 1/х), когда существует х, для которого функция Фх не выполняется, то есть она не функционирует и просто исключается29.
Исходя из этого пункта, я делаю конъюнкцию всего универсального, более модифицированного, чем можно было бы подумать по квантору «для всякого», и квантора «существует», соединяемого квантификацией с первым, поскольку он неявно отличается от того, что подразумевается в предложении, которое Аристотель назвал частным. Я делаю конъюнкцию исходя из того, что рассматриваемое «существует», создавая предел для «для всякого», является тем, что его утверждает или подтверждает (в этом-то поговорка и упрекает противоречивость Аристотеля). […]
То, что я задаю существование субъекта в отрицании пропозициональной функции Fx, подразумевает, что оно записывается квантором, при помощи которого эта функция оказывается оторванной от обладания каким бы то ни было значением истинности в этом пункте, что не означает ошибки, когда ложное понимается лишь как термин falsus в университетской клинике, что я уже подчеркивал.
В классической логике, что бы там о ней не думать, ложное понимается лишь как истина обратного, оно указывает на это обратное. Поэтому справедливо будет записать нашу формулу так, как я это делаю: Ех · Фх`. […]
От двух вариантов зависит то, будет ли субъект предлагать здесь, чтобы его называли женщиной. Вот они:
Ех` · Фх`; и Ах · Фx`.
Такая запись не практикуется в математике30. В ней нельзя отрицать так, как это делает черта над квантором, отрицать то, что «не существует», тем более нельзя допускать того, чтобы «для всех» относилось к «не для всех».