Выбрать главу

— А что же с ней еще делать? Носить на груди вместо медальона?

— Отчего бы и нет! У нее такая совершенная форма. Идеальное коническое сечение.

— Ну и пусть комическое, мне-то что! — нетерпеливо отмахнулся Фило и разом отхватил половину лепешки.

— Да не комическое, а ко-ни-чес-ко-е! Неужели вы никогда не читали знаменитого трактата о конических сечениях, написанного великим древнегреческим математиком Аполлонием Пергским?

Мате прекрасно понимал, что трактата Аполлония Фило и в глаза не видал, — просто ему хотелось пристыдить своего спутника. Но тот и не думал смущаться.

— Не угнетайте меня, пожалуйста, своей эрудицией, — заявил он независимо. — Еще Хайям учил: «Будь мягче к людям! Хочешь быть мудрей, — не делай больно мудростью своей!»

Мате очень хотелось ответить, что вовсе не он, а Фило угнетает его своей эрудицией. Но вместо того он молча вытащил из кармана потрепанный блокнот, вырвал из него листок бумаги, свернул кулечком и, аккуратно подогнув края, поставил к себе на ладонь.

— Как по-вашему, что это такое?

— Фунтик! — по-детски обрадовался Фило.

— Сами вы фунтик! — добродушно огрызнулся Мате. — Конус это. Круговой конус, то есть такой, у которого основание — круг. И, как у всякого порядочного кругового конуса, есть у него вершина и ось. Иначе говоря, перпендикуляр, опущенный из вершины на основание. Заметьте еще, что окружность основания называется направляющей, а прямая, которая соединяет вершину конуса с любой точкой этой окружности, — образующей конуса. Понимаете?

Фило неуверенно кивнул.

— Теперь возьмем плоскость, — не унимался Мате.

— Где возьмем?

— О Господи! В воображении, конечно. Итак, возьмем воображаемую плоскость и рассечем ею конус, ну, хотя бы параллельно оси. В этом случае на поверхности конуса появится линия, которая называется гиперболой. Видите?

Но нет, Фило ничего не видел.

— Полное отсутствие математического воображения, — констатировал Мате и карандашом нарисовал на поверхности фунтика кривую от воображаемого сечения.

— Вот вам гипербола. А теперь рассечем конус параллельно образующей. При этом на поверхности его получится линия, которая называется параболой. Вот она.

Фило отрывисто засмеялся.

— Интересно, как вы отличаете гиперболу от параболы? На мой взгляд, они совершенно одинаковы.

— Так то на ваш взгляд. А на самом деле…

Мате снова достал блокнот и быстро начертил две кривые.

— Неужели вы и теперь не замечаете никакой разницы?

— Теперь замечаю, — снизошел Фило. — У гиперболы концы расходятся как у рогатки, а у параболы вроде бы держатся поближе, словно что-то их пригибает или притягивает друг к другу… Но при чем тут все-таки лепешки?

— Не беспокойтесь, дойдем и до лепешек, — заверил Мате. — На сей раз проведем такое сечение, которое не будет ни параллельным образующей, ни параллельным оси. В общем, нечто промежуточное между ними. И как вы думаете, что у нас при этом получится? У нас получится замкнутая кривая, которая называется эллипсом.

— Лепешка! — сейчас же установил Фило, взглянув на контур, нарисованный на фунтике. — Как сказано в «Евгении Онегине», увы, сомнений нет, я съел эллипс!

— Теперь никто не упрекнет вас в том, что вы не пробовали геометрии… Но шутки в сторону. На этом маленьком примере я хотел показать вам, что все на свете может быть выражено языком математики.

— Даже этот же четвероногий корабль пустыни? — Фило указал на высокомерно жующего верблюда, мимо которого они проходили.

— Отчего бы и нет? Взгляните на поверхность, образованную его горбами. Великолепный образчик гиперболического параболоида.

Мате подошел к верблюду и провел ладонью по мохнатой седлообразной спине. Но верблюд, вероятно, был противником фамильярности: он отвернулся и сплюнул, да так выразительно, что друзья расхохотались.

— Видите, — торжествовал Фило, — плевал он на ваш параболический гиперболоид или как его там…

Тут раздались певучие выкрики:

— Дыни, дыни! Спелые дыни! Положи кусочек в рот — половина сахар, половина мед!

Продолговатые, обтянутые сетчатой кожей дыни произвели на Фило не меньшее впечатление, чем лепешки.

— Не хотите ли отведать ломтик этого восхитительного эллипса, Мате? — предложил он, желая щегольнуть вновь приобретенными познаниями.

Но увы! Мате сказал, что дыня не эллипс, а эллипсоид вращения.

— Это что еще за фрукт?

— Скорее, продукт. Продукт вращения эллипса вокруг своей оси. При этом как раз и получается тело, напоминающее дыню.