3 = 3 (1 слагаемое)
10 = 3 + 7 (2 слагаемых)
29 = 3 + 7 + 19 (3 слагаемых)
81 = 3 + 7 + 19 + 23 + 29 (5 слагаемых)
220 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 71 (8 слагаемых)
589 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 (13 слагаемых)
1563 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 + 101 + 103 + 107 + 109 + 113 + 131 + 137 + 173 (21 слагаемое)
— Чуете? — спросил Мате, закончив таблицу и торжествующе посмеиваясь.
Но Фило лишь виновато хлопал глазами.
— Эх вы! — пристыдил его Мате. — Да тут и ребенку ясно, что количество простых чисел, входящих в каждую сумму, тоже образует ряд Фибоначчи.
— Но это же замечательное открытие! — бурно обрадовался Фило.
— До открытия далеко. Я исследовал только восемь строк треугольника, а их бесконечное множество.
— Так найдите общее доказательство.
— Только и всего? — Мате язвительно осклабился. — Попробуйте-ка сами!
— Э, нет, слуга покорный! Предоставим это мессеру Леонардо, — отшутился Фило. — К тому же вы все еще не ответили на мой вопрос.
— Наоборот! — энергично запротестовал Мате. — Я только и делаю, что отвечаю на него. Я показал вам, как перспективна игра с числами вообще и с числами Фибоначчи в частности. Она чревата самыми непредвиденными открытиями, которые могут привести к самым неожиданным практическим результатам. Вот почему я так высоко оцениваю этот удивительный числовой ряд. А теперь…
Он засунул руку в карман, позвякал там медяшками и без всякого видимого перехода предложил Фило отгадать, сколько монет у него в кармане. Фило обиделся: за кого его принимают? Факир он, что ли?
— Ладно! — смилостивился Мате. — Я не заставлю вас гадать ни на картах, ни на кофейной гуще. Вот вам некоторые наводящие данные. В кармане у меня только трех- и пятикопеечные монеты на сумму 49 копеек.
— Так бы сразу и сказали! Теперь я, по крайней мере, понимаю, что должен составить уравнение, и притом весьма простое. Обозначим число пятачков через х, а число трехкопеечных монет — через у. Тогда пятикопеечных монет будет на сумму 5х, а трехкопеечных — на 3у. Общая сумма их, как известно, 49 копеек. Следовательно, 5х + 3у = 49.
— Ставлю вам пять с плюсом, — сказал Мате. — Уравнение отличное. Но как вы его решите?
Фило призадумался. Попробуйте-ка решить одно уравнение с двумя неизвестными!
— Не беда, — утешил его Мате. — Мы ведь с вами знаем, что число монет каждого достоинства может быть только целым, а не дробным. Так давайте попробуем подобрать эти числа. Начнем, естественно, с самого маленького целого числа: с единицы. Иначе говоря, предположим, что пятачок у меня всего один. Пишем: х = 1. Теперь подставим это в наше уравнение: 5 х 1 + 3у = 49. Отсюда 3у = 44, а у = 44/3
— Простите, 44/3 не целое число…
— Прекрасно. Значит, наше предположение отпадает. Теперь допустим, что х = 2. Тогда 5 х 2 + 3у = 49. Отсюда 3у = 39, у = 13. Получается, что у меня два пятака и тринадцать трехкопеечных монет.
— Браво! — ликовал Фило. — Задача решена!
— Экий вы быстрый! А ну как есть другое решение? А вдруг у меня не два, а пять пятачков? Возможно это или невозможно?
— Сейчас узнаем. 5 х 5 + 3у = 49. Отсюда 2у = 24, у = 8. Вот так компот! Выходит, у задачи не одно решение.
— Как видите.
— Поискать, что ли, другие?
И Фило принялся за поиски. Перебрав варианты х = 3, 4, 6 и 7, он убедился, что ни один из них невозможен. Зато при х = 8 игрек оказался равным 3. Таким образом к прежним двум прибавилось еще одно, третье решение. Однако вариант х = 9 опять не подошел. Фило собрался было подставить х = 10, но Мате, смеясь, остановил его: ведь в этом случае одних пятачков было бы на 50 копеек, а у него всего 49. Значит, дальнейшие поиски бессмысленны.
— Итак, — подытожил он, — мы выяснили, что уравнение имеет три решения: 1) х = 2, у = 13; 2) х = 5, у = 8; 3) х = 8, у = 3. Следовательно, в кармане у меня либо 15, либо 13, либо 11 монет.
Фило неодобрительно поджал губы. Ну и точность! Тут уж бабушка не надвое, а натрое гадала.
— Потому-то уравнения такого рода и называются неопределенными, — разъяснил Мате. — Кроме того, наше уравнение отличается от других неопределенных еще и тем, что по условию ответ его должен быть обязательно в целых числах.
— Не понимаю, — надулся Фило, — кому нужны уравнения с несколькими ответами?
— Не скажите. Неопределенные уравнения интересовали математиков с глубокой древности. Ими занимались еще в Древней Индии! Но особенно подробно изучал их грек Диофант. Он рассмотрел многие неопределенные уравнения вплоть до четвертой степени и нашел для каждого все возможные решения в целых числах. Потому-то уравнения такого рода стали называть диофантовыми, хотя общего метода решения их Диофант не обнаружил.
— Но для чего все-таки нужны такие уравнения? Где они используются?
— Везде. В любой науке, в любой отрасли народного хозяйства — всюду, где мы имеем дело только с целыми числами. Вот, например, может ли фабрика выпустить не целое число шляп, скажем, 245 с четвертью? Можно ли запустить в космос полтора спутника? Бывает ли в табуне не целое число лошадей? Разумеется, нет. Таких задач, которые должны быть решены только в целых числах, великое множество. Понимаете теперь, какое важное место в нашей жизни занимают диофантовы уравнения?
— Понимаю, понимаю, — сдался Фило. — Но вам не кажется, что мы слишком отдалились от первоначальной темы нашего разговора? Говорили о числах Фибоначчи, потом ни с того ни с сего перескочили на диофантовы уравнения…
— Это вы называете «ни с того ни с сего»? Да ведь между ними самая прямая связь! Да будет вам известно, что десятая проблема Гильберта, решенная посредством чисел Фибоначчи, касается именно диофантовых уравнений! Она предлагает указать способ, с помощью которого после конечного числа операций возможно установить, разрешимо ли данное диофантово уравнение в целых числах.
— Вот оно что! — сообразил Фило. — Стало быть, именно этот способ и нашел Юрий Матиясевич?
Мате замялся.
— Жаль вас огорчать, но все было как раз наоборот. Матиясевич разрешил десятую проблему в отрицательном смысле. Он доказал, что такого способа в общем виде не существует.
— Ууу! — разочарованно протянул Фило. — Так десятая проблема Гильберта оказалась бесполезной?
Мате сердито замахал руками. Что за чепуха! Во-первых, метод, который применил Матиясевич, разрешая десятую проблему, представляет огромную ценность для математики уже сам по себе. Во-вторых, вывод его избавил ученых от дальнейших поисков в этом направлении. И наконец, в-третьих, — десятая проблема Гильберта привела к возникновению новой ветви математики, которая называется теорией алгоритмов. А это такое… такое…
Но тут раздался взволнованный, срывающийся голос Фило:
— Мате, Мате! Взгляните на результаты нашего уравнения! Два, три, пять, восемь, тринадцать… Это же числа Фибоначчи!
Мате оторопел. Что за чудеса! Как он сразу не заметил? Впрочем… впрочем, может ведь оказаться, что произошло случайное совпадение. Попробовать разве проверить, какие решения получаются при других суммах? Вот хоть для четырнадцати копеек.
Он быстро перебрал все возможные варианты и нашел, что уравнение имеет всего-навсего одно решение: х = 1, у = 3.
— Снова числа Фибоначчи! — определил Фило. — Возьмем еще какую-нибудь сумму. Двадцать одну копейку!
На этот раз тоже получилось одно решение, и опять-таки в числах Фибоначчи: х = 3, у = 2.
Мате испытующе покосился на друга.
— Ну, — сказал он насмешливо, — почему вы не кричите, что мы с вами сделали великое открытие?
Фило плутовато погрозил ему пальцем. Теперь он стреляный воробей — знает, что три частных случая ни о чем еще не говорят!
— А что будем делать с поисками общей закономерности? — продолжал иронизировать Мате. — Снова спихнем на мессера Леонардо?