Выбрать главу

Вначале мы рассмотрим "чисто упругие" варианты, то есть вообще без затрат бортового запаса топлива, (хотя понятие "упругого взаимодействия" здесь надо понимать весьма условно, просто как факт обмена импульсом, при этом физический посредник такого взаимодействия может быть любым).

Если рассматривать в качестве посредника при обмене импульсом твердые (упругие) тела, например тросы или наполненные газом оболочки, то при прочности материала 10 ГПа можно, видимо, упруго отражать снаряды при скорости примерно до 2 км/с. Можно представить себе такую большую бадминтонную ракетку, с сеткой из нитей, натянутых по принципу тетивы лука, и прикреплённых к упругим элементам, которая отражает мячики, состоящие из прочной эластичной оболочки, наполненной лёгким газом. Для такой системы предел скорости упругого отражения может быть около 2 км/с, так что мы будем ориентироваться на это значение.

Рассмотрим в начале самый простой вариант, когда снаряды догоняют ракету (в данном случае, скорее, ракетку…) с постоянной разностью скоростей в 2 км/с, независимо от текущей скорости ракеты.

Понятно, что чем больше начальная скорость снаряда относительно ракеты, тем больший импульс он передаст при столкновении (2mΔV); но мы не можем увеличить допустимую скорость столкновения. Так что при любой текущей скорости ракеты V1, снаряды должны догонять её со скоростью (V1 + 2 км/с), а после упругого столкновения их скорость станет (V1 — 2 км/с).

Желательно, чтобы отражение было полностью упругим, то есть потери энергии при столкновении должны быть минимальными. Это не из-за того, что нам жалко энергии; в данном случае, потеря даже 50 % энергии при неупругом столкновении приведёт к уменьшению передаваемого импульса всего лишь на 15 %. Проблема в том, что эта энергия, по крайней мере частично, пойдёт на нагрев элементов конструкции двигателя. (часть энергии снарядов можно отнимать для бортовых нужд или нагрева рабочего тела, главное чтобы не было неконтролируемого рассеивания тепла).

Если относительная скорость при столкновении всегда равна 2 км/с, то переданный импульс составит p= 2mΔV = 4000m; (то есть удельный импульс по отношению к массе снарядов будет 4 км/с).

начальная кинетическая энергия снаряда E0 = m(V1 + 2000)2/2;

переданная ракете кинетическая энергия ΔE = pV1 = 2mΔVV1 = 4000mV1;

Отношение ΔE/E0 — коэффициент полезного использования кинетической энергии снаряда, то есть её превращения в кинетическую энергию ракеты, важнейший энергетический показатель эффективности системы:

ΔE/E0 = (4000mV1)/(m(V1 + 2000)2/2) = 8000*V1/(V1 + 2000)2.

Видно, что это отношение равно 0 при (V1=0), т. е. при неподвижной ракете КПД передачи энергии = 0;

При V1 = 2000 значение выражения достигает максимума,

(8000*2000)/(2000 + 2000)2 = 1; то есть, если снаряд после столкновения остановится, то 100 % его кинетической энергии перейдёт ракете.

При дальнейшем росте скорости, КПД опять начинает снижаться, но не очень быстро:

При V1 = 8000 (первая космическая скорость),

(8000*8000)/(8000 + 2000)2 = 0,64;

При V1 = 18000 (предельная достижимая скорость ракеты при максимальной скорости снаряда 20 км/с):

(8000*18000)/(18000 + 2000)2 = 0,36;

В целом, для разгона ракеты от 0 до 18 км/с потребуется всего 4,5 M0 снарядов, и при этом средний КПД использования энергии будет более 40 %, что в общем очень неплохо, (по сравнению с ракетами на химическом топливе, которые до такой скорости не дотянут даже 1 % начальной массы).

Если стоимость 1 кг снарядов составит 1000 долларов, то цена такого межпланетного запуска будет на уровне 5-10 тысяч долларов за кг груза, что в десятки раз ниже стоимости планируемых сейчас проектов.

3. Газовый упруго-кинетический двигатель (тип 1)

Для освоения Марса, Венеры и ближайших астероидов начальной скорости 15–16 км/с вполне достаточно. Но для Меркурия и внешних планет надо бы побольше.

Мячиковый двигатель может работать при любой скорости снарядов, пока они смогут догонять ракету, но при больших скоростях отношение передаваемого импульса и кинетической энергии к начальному импульсу и энергии снаряда будет уменьшаться. В принципе, даже при начальной скорости снаряда 40–50 км/с, и разности скоростей снаряда и ракеты 2 км/с, такая система ещё будет работоспособна.

Если скорость снаряда 40 км/с, а ракеты 38 км/с, то КПД передачи энергии всё ещё будет около 20 %, и это вполне можно использовать, при этом для разгона ракеты от 0 до 38 км/с понадобится всего 10 кг снарядов на килограмм груза. Если сравнивать с ракетами на химическом топливе, то разница в 2000 раз. Но всё же хочется иметь КПД ещё больше. Очевидно, что для этого нам нужны мячики, способные отскакивать от преграды с большей скоростью, хотя бы 10 км/с или около того.