Выбрать главу

В системах Юпитера и Сатурна наиболее доступным веществом будет вода в виде льда, причём её запасы там очень велики, и в первую очередь надо рассматривать варианты использования воды в исходном виде.

Использование водорода даёт некоторые преимущества, но если его придётся получать из воды, то эффективность добычи топлива снизится на порядок, так как 90 % массы (в виде кислорода) пойдёт в отходы. Водородная топливная система оправдана в том случае, когда либо есть потребность в получаемом попутно кислороде (для нужд обитаемой станции), либо есть запасы водорода или хотя бы метана, чего следует ожидать в более холодных системах, либо непосредственно в атмосфере планет-гигантов, но извлекать топливо оттуда невыгодно.

Рассмотрим сначала варианты с водой.

Принцип нагрева топлива будет один и тот же, независимо от того, хранится это топливо (рабочее тело) в баках ракеты, или полностью вне её. Во втором случае более эффективно используется полученная газом энергия, но принцип нагрева газа во всех случаях будет один.

Допустим, у нас есть некоторая масса вещества (например льда, хотя в принципе можно использовать что угодно, даже силикатный песок), которую мы как-то смогли разогнать до скорости 70 км/с, относительно другой массы вещества (которую мы считаем неподвижной). Кинетическая энергия 1 кг носителей составляет 2450 МДж/кг.

При столкновении этого вещества с существенно большей массой (неподвижного) рабочего тела, в соотношении 1:150, выделится избыток энергии около 16 МДж на килограмм общей массы. Будет передан также некоторый начальный импульс, около 500 м/с, что не очень много, но про него надо помнить.

Если у нас есть обычный лёд или вода в жидком виде, то после получения 16 МДж/кг дополнительной энергии, это всё превратится в аналог обычного кислородно-водородного топлива (высшая энергия сгорания которого 15,5 МДж/кг). Удельный импульс такого топлива будет на уровне 4500 м/с, и он, в принципе, может быть направлен в произвольную сторону (относительно вектора скорости носителей кинетической энергии); но величина импульса будет зависеть от направления. Если направление вектора тяги и вектора скорости носителей совпадают, то УИ будет на 500 м/с больше, а если в противоположную сторону — на 500 м/с меньше; то есть, в зависимости от направления старта ракеты, удельный импульс в данном случае будет переменным, от 4000 до 5000 м/с.

Мы можем произвольно регулировать соотношение масс носителей кинетической энергии и рабочего тела, и таким образом увеличивать удельную энергию рабочего тела и удельный импульс, но есть несколько нюансов, которые ограничивают возможность увеличения УИ.

При температуре выше 3500К (для давлений порядка 10 МПа) вода разлагается сначала на молекулы газов и радикалы, а затем на атомы водорода и кислорода, и в интервале 3500-6000К поглощается очень много энергии, не пропорционально росту температуры. Запас внутренней энергии возрастает, и, в принципе, потом может быть возвращён и использован при понижении температуры. Но поскольку способность газа совершать работу при расширении определяется величиной PV, (которая определяется произведением числа молей газа на температуру), то замедление роста температуры, несмотря на рост запаса энергии, означает, что для совершения такого количества работы, которое соответствует хотя бы половине запаса внутренней энергии, может потребоваться очень значительное расширение газа, в сотни и тысячи раз, что не всегда технически возможно.

Из-за этого в верхней части температурного интервала диссоциации, то есть при температурах 5000-6000К, термодинамические свойства газа будут плохими, в результате чего КПД двигателя упадёт ниже 50 %.

Далее в интервале 9000-10.000К атомарную смесь водорода и кислорода можно использовать, хотя и с не очень хорошим КПД. Выше 10–11 тысяч градусов начинается массовая ионизация кислорода и водорода, и энергия опять поглощается практически безполезно. При температурах выше 20.000К воду, по-видимому, тоже можно использовать в виде плазмы.

Рассмотрим теперь второй пригодный для использования воды диапазон температур, 9000-10.000К.

В этом диапазоне диссоциация молекул уже закончена, но ионизация атомов ещё не началась, и рабочее тело представляет собой нейтральный одноатомный газ, почти идеальный в небольшом диапазоне температур. Однако внутренняя энергия этого газа только на 1/4 будет представлена механической энергией поступательного движения атомов, а 3/4 энергии будет скрыто, то есть затрачено на диссоциацию молекул.