Выбрать главу

Само по себе это не очень полезно для нас, хотя, пожалуй, можно использовать для освещения.

Возьмём теперь ракету. Её придётся привезти с Земли (если, конечно, мы так и не научимся делать высокопроизводительные 3D-принтеры с вращательной подачей материала из рулонов).

Но ракету придётся привезти 1 раз, а заправлять её мы будем на месте.

Ракету запустим по такой же траектории, а навстречу ей — много мелких кусочков льда. Внутри ракеты тоже будут такие же кусочки, (или жидкая вода, подаваемая в сопло струйками).

В нижней точке траектории, произойдёт взаимодействие порций вещества, имеющих большую разность скоростей, и при этом часть выделившегося избытка кинетической энергии может быть преобразована в полезную работу, то есть в данном случае в кинетическую энергию оставшейся массы вещества (ракеты). Ранее, в пунктах 1.9–1.10, мы рассмотрели 2 различных способа организации такого взаимодействия, но их намного больше, можно предложить ещё 3–4 альтернативных варианта. Но мы видели, что, практически независимо от выбранного варианта преобразования энергии, конечный результат, фактически, зависит только от её (энергии) начального запаса; то есть примерно 55–60 % избытка кинетической энергии расходуемого топлива может быть передано ракете. Если масса ракеты примерно вдвое меньше массы всего затраченного топлива (в обоих рассмотренных случаях, затрачивалось 11 тонн топлива при оставшейся массе 5 тонн), то её скорость относительно планеты может быть увеличена с 60 до 90 км/с, и тогда снова на бесконечность она выйдет со скоростью почти 70 км/с, и удельной кинетической энергией 2,3 ГДж/кг.

Далее, надо сделать ещё несколько манёвров.

Оставшаяся в ракете часть топлива должна отделиться от неё, первоначально в виде небольших контейнеров или кассет с собственными устройствами управления и навигации, и продолжить движение к цели с максимальной скоростью (и энергией); однако, саму ракету (уже без топлива) надо сразу же снова затормозить на 30 км/с, так, чтобы она снова достигла исходного пункта заправки, на расстоянии 20 млн. км от Юпитера, с почти нулевой скоростью. (проще всего, вообще-то, использовать для этого атмосферу самой планеты, и какую-то разновидность парашюта, возможно электромагнитного).

Таким образом, далее у нас будет 4 тонны топлива (льда) в кассетах, летящих со скоростью около 70 км/с, и ракета массой 1 тонна, без топлива, летящая по длинной эллиптической траектории, с минимальной скоростью.

Проще всего, конечно, было бы, если бы и ракета, и кассеты с носителями кинетической энергии могли достичь исходного заправочного пункта за одинаковое время. Однако, это сложно сделать: ракета будет двигаться по экономичной траектории месяц, а кассеты со скоростью 70 км/с достигнут цели за 3 дня. Поскольку время, за которое топливо достигает цели, меньше, то для его использования потребуется вторая такая же ракета, уже заправленная и находящаяся в исходной точке в 20 млн км от Юпитера. За то время (30 суток), пока первая ракета вернётся в исходную точку и будет снова заправлена, вторая как раз достигнет Юпитера и отправится назад, предоставив топливо для повторного запуска первой. При этом длительность цикла получения топлива для следующего запуска будет 30 суток, а длительность цикла использования ракет вдвое больше.

В принципе, двух ракет уже достаточно для организации такого непрерывно действующего цикла; но при этом могут потребоваться дополнительные манёвры для изменения точки старта, поскольку сама ракета летит назад от Юпитера по длинной эллиптической траектории, и может вернуться примерно в ту же точку, откуда стартовала в первый раз; в то время как кассеты с топливом движутся с большой скоростью по гиперболической траектории, и прилетят в другую точку, отстоящую от первой примерно на 1/8 окружности радиусом в 20 миллионов километров, т. е. пересекут эту окружность на расстоянии в 15 млн км от первой точки. Поэтому, для организации непрерывного энергетического цикла, может потребоваться 2 или более заправочных станций, распределённых по дальней орбите на расстоянии 10–20 млн км от Юпитера, и по крайней мере 1 ракета на каждую станцию. Хотя, в минимальном варианте, по-видимому, будет всё таки достаточно не более двух заправочных станций (двух спутников или комет), находящихся на орбите с равным периодом обращения, в 15 млн км друг от друга, и всего двух ракет, по одной на каждую станцию (или по 2, в более сложном варианте). При этом первая ракета поставляет носителей кинетической энергии для второй станции, отстоящей на 45о по орбите от исходной; вторая ракета, на второй заправочной станции, использует часть этой энергии для разгона, и достигает Юпитера за то время, пока первая летит обратно; и затем поставляет энергию для первой, которая к тому времени опять находится на первой станции.