Выбрать главу

Теперь мы можем сравнить мощность луцепотока и стоимость энергии, доставляемой таким способом к Земле, с другими вариантами.

Отправив к Юпитеру один добывающий комплекс весом 100 тонн, можно будет ежегодно получать 12000 тонн носителей кинетической энергии (для которых мы <украли> придумали короткое и понятное название — "луц", потому что это экономит 90 % букв в названии).

При средней кинетической энергии луца 3 ГДж/кг это позволит вывести на околоземную орбиту в 50 раз большую массу груза (пол миллиона тонн);

либо можно отправить обратно к Юпитеру в 10 раз больший груз, по отношению к массе полученного луца (12000 тонн х 10 =120.000 тонн в год), то есть, проще говоря, в 1000 раз больше, чем уже было отправлено.

Начав с запуска единственного корабля на химическом топливе, за 9 лет мощность энергетического цикла можно нарастить в миллион раз, (в 1000 раз каждые 3 года, +3 года ожидания доставки первой партии)…

Мне кажется, 12 миллиардов тонн луца в год нам поначалу хватит.

Это всего 12 кубических километров экологически чистой воды; но летящей с очень большой скоростью.

1 миллиард тонн луца со скоростным фактором 100 км/с заменит по выделяемой энергии 50 тысяч тонн урана-235, (или 7 миллионов тонн природного урана). И работу 5 тысяч средних атомных электростанций, типа Фокусимы и Чернобыля. Но, это вода. Просто вода, даже не тяжёлая. Никаких излучений, никаких изотопов. В миллиард раз чище всего, что можно придумать, включая гелий-3, который, вроде, в 1000 раз дороже золота, и за которым придётся лететь вообще к Плутону.

Мы можем оценить стоимость получаемой таким образом энергии.

Каждый килограмм структурного вещества (ракет, добывающих установок), доставленный в систему Юпитера, ежегодно будет возвращать к Земле 120 кг вещества при скорости от 50 до 100 км/с, с кинетической энергией от 1 до 5 ГДж/кг, в среднем 3 ГДж/кг. Стоимость перевозки оборудования к любой планете, после раскрутки системы, станет почти равной нулю (равна стоимости сопла для использования внешнего топлива, плюс распределённой инфраструктуры управления и навигации).

Таким образом, стоимость установленного в системе Юпитера оборудования, вместе с доставкой, будет мало отличаться от исходной стоимости производства этого оборудования на Земле.

Оценим стоимость 1 килограмма оборудования в 1000 долларов. Тогда, в расчёте на окупаемость за 5 лет, оно доставит обратно к Земле 600 килограммов луца, с суммарной энергией 1800 ГДж. Стало быть, цена этой энергии и есть 1000 долларов; 1,8 ГДж энергии тогда стоят 1 доллар; а 3,6 МДж, соответственно, 0,2 цента.

0,2 цента за 1 кВт*час — то есть в 50 раза дешевле, чем стоит выработка электроэнергии на Земле сейчас.

Это уже не только космические запуски по 10 центов за килограмм груза, на воде из речки, и билет на Луну в викенд за 50 долларов.

И не только колонизация и кондиционирование планет Солнечной системы в течении следующих 20–30 лет.

Такая цена энергии позволит радикально изменить количество и качество энергопотребления на Земле, вывести с Земли 90 % вредных и энергоёмких производств, и наконец превратить Землю в действительно приятное место для жизни 50-100 миллиардов <умных, красивых и трудолюбивых> каких-нибудь людей.

Имея пристойное энергоснабжение, можно убрать лёд из антарктиды (потому что мешает апельсиновым рощам), и перевезти его в Сахару, Гоби, и (если сильно попросят) неваду. Над Норильском я предлагаю зажечь маленькое экологически чистое солнце на 40 ТВт, на высоте километров 50, и включать его полярной ночью, для повышения урожая апельсинов.

В общем, иметь на планете всего 5 % пригодной для жизни площади поверхности — как-то уже стыдно должно быть, в третьем тысячелетии…

Конечно, надо будет следить, чтобы школьники на каникулах могли не только слетать на Уран, но и продолжали усердно учиться… и да, отобрать у них смартфоны (а все убытки взыскать с людей, которые продавали им алкоголь, наркотики, смартфоны и т. д. На марс их, сожать яблони.).

3. Луц для бедняков.

(технология получения носителей кинетической энергии со скоростью 40–70 км/с без использования темо-кинетических двигателей, с помощью только обычных ракет на химическом топливе).

Предположим, что есть где-то во Вселенной не очень умная расса гуманоидов, которая так и не сможет создать работоспособный термо-кинетический двигатель, хотя бы атмосферный. (может быть, у них особи с меньшей массой мозга размножались быстрее и в конце концов заняли 100 % жизненного пространства, или по какой другой причине, но вот не могут они изобрести термо-кинетический двигатель — и всё).