Несмотря на эти оговорки, движение в сторону улучшения интеллектуальных способностей по пути создания киберорганизмов не кажется совершенно бесперспективным. Впечатляющие результаты работ с гиппокампом крыс показали возможность создания нейронного протеза, который может повысить эффективность выполнения простой задачи на запоминание[172]. На сегодняшний день имплантат считывает информацию с электродов в количестве от одного десятка до двух десятков, размещенных в области CA3 гиппокампа, и передает ее на такое же количество нейронов, расположенных в области CA1 гиппокампа. Микропроцессор способен различать две модели возбуждения в первой области (соответствующие двум видам информации — «правый рычаг» и «левый рычаг») и научиться тому, как эти модели передаются во вторую область. Такие протезы могут не только восстановить функционирование мозга в ситуации, когда нормальное нейронное взаимодействие между двумя областями нейронов нарушено, но и за счет направленной активации требуемой модели во второй области способны повысить эффективность выполнения задачи по сравнению с обычным для крыс уровнем. Хотя по современным стандартам это и весьма впечатляющее в техническом плане достижение, эксперимент оставляет без ответа множество вопросов. Насколько хорошо этот подход масштабируется? Ведь число комбинаций взаимодействующих областей мозга, а также нейронов на входе и выходе из них, очень велико, поэтому сможем ли мы избежать комбинаторного взрыва при попытке картировать взаимодействия в мозгу? Не получится ли, что хотя эффективность решения тестовой задачи растет, этому сопутствуют некие скрытые издержки, например снижение способности обобщать стимулы или неспособность забыть определенную ассоциацию, после того как среда изменилась? Получит ли человек — располагающий, в отличие от крыс, внешними носителями памяти вроде бумаги и ручки — какую-либо выгоду от появления таких возможностей? Насколько легко будет применить подобный метод к другим областям мозга? В то время как работе описанного протеза помогает сравнительно простая структура областей гиппокампа, обеспечивающая последовательную передачу сигнала в одну сторону (по сути, однонаправленная связь между зонами СА3 и СА1), другие структуры в коре головного мозга используют рекуррентные циклы обратной связи, что значительно повышает сложность схемы связей и, видимо, затруднит расшифровку набора функций встроенных в нее групп нейронов.
В плане развития киборгов есть надежда, что мозг, снабженный имплантатом, поддерживающим связь с внешней средой, со временем научится сопоставлять свое внутреннее состояние и получаемые внешние сигналы. В этом случае имплантату не обязательно обладать интеллектом, скорее, мозг должен будет интеллектуально настроиться на интерфейс, примерно как мозг ребенка постепенно обучается интерпретировать сигналы, поступающие из внешнего мира через рецепторы органов зрения и слуха[173]. И снова возникает естественный вопрос: принесет ли это какую-нибудь реальную пользу? Предположим, пластичность мозга окажется настолько достаточной, что он научится распознавать модели в рамках некоего нового потока входных сигналов, проецируемых на его кору посредством некоего нейрокомпьютерного интерфейса, — но почему тогда просто не спроецировать ту же самую информацию непосредственно на сетчатку глаза в виде зрительных образов или на улитку в виде звука? Применение низкотехнологичных методов поможет избежать множества проблем — хотя и в том и в другом случаях нашему мозгу, чтобы научиться понимать информацию, придется задействовать механизмы распознавания образов и присущее ему свойство пластичности.
173
В случаях некоторых имплантатов потребуются две формы обучения: устройство учится интерпретировать нейронные представления организма; сам организм учится пользоваться системой, генерируя соответствующие модели возбуждения, см.: [Carmena et al. 2003].