Вариацией тьюринговой концепции «машины-ребенка» стала идея зародыша ИИ19. Однако если «машине-ребенку», как это представлял Тьюринг, полагалось иметь относительно фиксированную архитектуру и развивать свой потенциал за счет накопления контента, зародыш ИИ будет более сложной системой, самосовершенствующей собственную архитектуру. На ранних стадиях существования зародыш ИИ развивается в основном за счет сбора информации, действуя методом проб и ошибок не без помощи программиста. «Повзрослев», он должен научиться самостоятельно разбираться в принципах своей работы, чтобы уметь проектировать новые алгоритмы и вычислительные структуры, повышающие его когнитивную эффективность. Требуемое понимание возможно лишь в тех случаях, когда зародыш ИИ или во многих областях достиг довольно высокого общего уровня интеллектуального развития, или в отдельных предметных областях — скажем, кибернетике и математике — преодолел некий интеллектуальный порог.
Это подводит нас к еще одной важной концепции, получившей название «рекурсивное самосовершенствование». Успешный зародыш ИИ должен быть способен к постоянному саморазвитию: первая версия создает улучшенную версию самой себя, которая намного умнее оригинальной; улучшенная версия, в свою очередь, трудится над еще более улучшенной версией и так далее20. При некоторых условиях процесс рекурсивного самосовершенствования может продолжаться довольно долго и в конце концов привести к взрывному развитию искусственного интеллекта. Имеется в виду событие, в ходе которого за короткий период времени общий интеллект системы вырастает со сравнительно скромного уровня (возможно, во многих аспектах, кроме программирования и исследований в области ИИ, даже ниже человеческого) до сверхразумного, радикально превосходящего уровень человека. В четвертой главе мы вернемся к этой перспективе, весьма важной по своему значению, и подробнее проанализируем динамику развития событий.
Обратите внимание, что такая модель развития предполагает возможность сюрпризов. Попытки создать универсальный искусственный интеллект могут, с одной стороны, закончиться полной неудачей, а с другой — привести к последнему недостающему критическому элементу — после чего зародыш ИИ станет способен на устойчивое рекурсивное самосовершенствование.
Прежде чем закончить этот раздел главы, хотелось бы подчеркнуть еще одну вещь: совсем не обязательно, чтобы искусственный интеллект был уподоблен человеческому разуму. Вполне допускаю, что ИИ станет совершенно «чужим» — скорее всего, так и случится. Можно ожидать, что когнитивная архитектура ИИ будет резко отличаться от когнитивной системы человека; например, на ранних стадиях когнитивная архитектура будет иметь совсем другие сильные и слабые признаки (хотя, как мы увидим далее, ИИ удастся преодолеть исходные недостатки). Помимо всего, целеустремленные системы ИИ могут не иметь ничего общего с системой целеустремлений человечества. Нет оснований утверждать, что ИИ среднего уровня начнет руководствоваться человеческими чувствами, такими как любовь, ненависть, гордость, — для такой сложной адаптации потребуется огромный объем дорогостоящих работ, более того, к появлению подобной возможности у ИИ следует отнестись очень осмотрительно. Это одновременно и большая проблема, и большие возможности. Мы вернемся к мотивации ИИ в дальнейших главах, но эта идея настолько важна для книги, что ее стоит держать в голове постоянно.
Полная эмуляция головного мозга человека
В процессе полномасштабного имитационного моделирования головного мозга, который мы называем «полная эмуляция мозга» или «загрузка разума», искусственный интеллект создается путем сканирования и точного воспроизведения вычислительной структуры биологического мозга. Таким образом, приходится всецело черпать вдохновение у природы — крайний случай неприкрытого плагиата. Чтобы полная эмуляция мозга прошла успешно, требуется выполнить ряд определенных шагов.
Первый этап. Делается довольно подробное сканирование человеческого мозга. Это может включать фиксацию мозга умершего человека методом витрификации, или стеклования (в результате ткани становятся твердыми, как стекло). Затем одним аппаратом с ткани делаются тонкие срезы, которые пропускают через другой аппарат для сканирования, возможно, при помощи электронных микроскопов. На этой стадии применяется окраска материала специальными красителями, чтобы выявить его структурные и химические свойства. При этом параллельно работают множество сканирующих аппаратов, одновременно обрабатывающих различные срезы ткани.
Второй этап. Исходные данные со сканеров загружают в компьютер для автоматической обработки изображений, чтобы реконструировать трехмерную нейронную сеть, отвечающую за познание в биологическом мозгу. Дабы сократить количество снимков в высоком разрешении, которые необходимо хранить в буфере, этот этап может выполняться одновременно с первым. Полученную карту комбинируют с библиотекой нейровычислительных моделей на нейронах разного типа или на различных нейронных элементах (например, могут отличаться синапсы). Некоторые результаты сканирования и обработки изображений с применением современной технологии показаны на рис. 4.
Рис. 4. Трехмерная реконструкция срезов, проведенная нейроанатомическим методом (изображения под электронным микроскопом).Слева вверху: дендриты и аксоны — типовой электронно-микроскопический снимок, показывающий поперечное сечение нейронов. Справа вверху: объемная реконструкция среза сетчатки глаза кролика, полученная по снимкам сканирующего электронного микроскопа21. Отдельные двумерные снимки «складываются» в куб со стороной примерно 11 мкм. Внизу: реконструкция подмножества нейронных проекций, составляющих нейропиль, созданная с помощью алгоритма автоматической сегментации22.
Третий этап. Нейросетевая вычислительная структура, полученная на предыдущем этапе, загружается в довольно мощный компьютер. В случае полного успеха результат станет цифровой копией исходного интеллекта с неповрежденной памятью и нетронутым типом личности. Эмуляция человеческого разума теперь существует в виде программного обеспечения на компьютере. Разум может как обитать в виртуальном пространстве, так и взаимодействовать с реальным миром при помощи роботизированных конечностей.
Работа над полной эмуляцией мозга не предполагает, что исследователи должны разбираться в процессе познания или программировании искусственного интеллекта. Им нужно лишь быть высокими профессионалами в таком вопросе, как низкоуровневые функциональные характеристики базовых вычислительных элементов мозга. Для успешно проведенной эмуляции не потребуются ни фундаментальные концепции, ни теоретические открытия.
Без применения самых передовых технологий полная эмуляция головного мозга практически неосуществима. Прежде всего нужно, имея в наличии необходимое оборудование и соблюдая все условия, провести три главные манипуляции:
1)-сканирование — высокопроизводительные микроскопы с хорошим разрешением, дающие возможность обнаружить нужные свойства;
2)-трансляция — автоматизированный анализ изображений для перевода исходных данных сканирования в связанную трехмерную модель из релевантных вычислительных элементов;
3)-моделирование — компьютер, достаточно мощный для обработки полученной оцифрованной структуры.
По сравнению с перечисленными этапами, связанными с довольно напряженным и высокоточным трудом (см. табл. 4), покажется относительно незамысловатым делом разработать базовую виртуальную реальность или роботизированную внешность с аудиовизуальным каналом для ввода данных и каким-нибудь простым каналом для их вывода. Отвечающие минимальным требованиям простые системы ввода и вывода, похоже, можно получить, даже с помощью имеющихся под рукой технологий и оборудования23.