Выбрать главу

Без входных данных прогностические машины не смогут работать, поэтому их называют просто «данными», в отличие от обучающих и данных обратной связи.

Неподготовленные пользователи не улавливают в необработанных данных связи между информацией о частоте сердечных сокращений (ЧСС) и нарушением сердечного ритма. А приложение Cardiogram выявляет его с 97 %-ной точностью благодаря работе глубокой нейронной сети[34]. Отклонения в работе сердца становятся предвестниками 25 % всех инфарктов, а усовершенствования анамнеза позволят врачам вовремя назначить лечение. Для профилактики инфаркта существуют лекарства.

Но для этого потребители должны предоставить сведения о своем сердечном ритме. Машина не сможет прогнозировать риски для конкретного человека, не имея о нем необходимой информации. При наличии у прогностической машины индивидуальных данных человека она выдаст прогноз вероятности нарушений сердечного ритма.

Как машины учатся с помощью данных

Нынешнее поколение технологий ИИ не без причины называется «машинным обучением». Оно учится на данных. В только что описанном примере машина для составления прогноза нарушений сердечного ритма (и вероятности развития инфаркта) устанавливает связь между ЧСС и случаями диагностированной мерцательной аритмии. Для этого она сопоставляет входные данные Apple Watch – их статистики называют «независимыми переменными» – с информацией о нарушениях сердечного ритма («зависимой переменной»).

Чтобы обучить машину, информация о нарушениях сердечного ритма должна исходить от тех же людей, что входные данные Apple Watch. Другими словами, прогностической машине необходимы данные о большой выборке людей с нарушениями сердечного ритма наряду с полученными от них данными. Кроме того (и это важно), необходимы также аналогичные показатели большой выборки людей, не страдающих кардиологическими заболеваниями. Прогностическая машина сравнивает данные обеих групп, на основании чего выдает прогноз. И если паттерн сердечного ритма нового пациента ближе к данным «обучающей» выборки людей с нарушениями, то машина прогнозирует у него нарушение сердечного ритма.

Как и большинство медицинских приложений, Cardiogram собирает данные научных исследований с участием шести тысяч пользователей. Из них примерно у двухсот человек уже диагностировано нарушение сердечного ритма, Cardiogram остается только получить с помощью Apple Watch данные и сравнить их с предыдущими показателями.

Такие продукты продолжают совершенствовать точность прогнозов даже после выпуска. Прогностическим машинам необходимы данные обратной связи о корректности прогнозов: в данном случае это частота нарушений сердечного ритма среди пользователей продукта. Машина объединяет эти данные со входными данными кардиомониторинга и на основе полученной информации непрерывно повышает качество прогнозов.

Однако добыть обучающие данные не всегда легко. Для прогноза одной группы (в нашем случае это пациенты с риском сердечных заболеваний) необходима информация как о потенциальном риске (нарушении сердечного ритма), так и о том, что необходимо для уточнения прогноза данного прецедента в новом контексте (кардиомониторинг).

Еще сложнее, когда прогноз касается будущих событий. Вы можете предоставить прогностической машине подтвержденную информацию только на настоящий момент. Скажем, вы надумали купить билет на игры любимой команды на следующий сезон. В Торонто большинство болеет за местную хоккейную команду Maple Leafs. Вы хотите ходить только на матчи, в которых любимая команда победит, и не желаете платить за проигрышные. Вы решили, что стоит купить билет только в случае, если команда в следующем году выиграет минимум половину матчей. Но для этого вам необходимо спрогнозировать количество побед.

В хоккее выигрывает команда, загнавшая больше шайб в ворота противника. Поэтому вы предполагаете, что команда, забивающая больше голов, побеждает чаще. Вы загружаете в прогностическую машину данные за прошлые сезоны: сколько каждой команде засчитали голов, сколько она пропустила, каково количество побед каждой команды. Вам кажется, что это великолепный способ прогнозировать вероятность победы. Теперь вы собираетесь таким же образом прогнозировать количество выигрышей на следующий год.

вернуться

34

Buhr, S. Apple’s Watch Can Detect an Abnormal Heart Rhythm with 97 % Accuracy, UCSF Study Says; Singh, A. Applying Artifi cial Intelligence in Medicine: Our Early Results // Cardiogram (blog), May 11 // https://blog.cardiogr.am/applying-artificial-intelligence-in-medicine-our-earlyresults-78bfe7605d32/.