Некоторые IT-специалисты впервые оценили потенциал ИИ в 2012 году, когда команда студентов Университета Торонто одержала триумфальную победу на ежегодных соревнованиях по распознаванию визуальных образов ImageNet (Large Scale Visual Recognition Challenge). В последующие годы все финалисты ImageNet использовали новаторский для того времени подход «глубокого обучения»: распознавание объектов – не просто игра, оно наделяет машину «зрением».
Ряд руководителей технологических компаний увидели новые возможности ИИ, узнав о том, что в 2014 году Google приобрела британскую компанию DeepMind за более чем $600 млн, несмотря на ничтожный по сравнению с этой суммой доход. Крупнейшая сделка состоялась только потому, что DeepMind продемонстрировала свой ИИ, который научился – самостоятельно, без всякого программирования – играть в некоторые видеоигры Atari со сверхчеловеческой эффективностью.
Всемирно известной новостью ИИ стал в том же 2014 году благодаря решительному заявлению знаменитого физика Стивена Хокинга: «Все в нашей цивилизации является продуктом человеческого интеллекта… и создание искусственного интеллекта стало бы крупнейшим событием в истории человечества»[3].
Кто-то другой осознал грандиозность ИИ, впервые отпустив руль едущей «Теслы», управляемой автопилотом.
В Китае откровением стал момент, когда AlphaGo – ИИ DeepMind – выиграл у Ли Седоля, корейского профессионального игрока в го, а позднее в том же году победил лучшего китайского игрока Кэ Цзе. «Нью-Йорк Таймс» назвала эту игру «моментом Спутника»[4] для Китая[5]. Как после запуска спутника в СССР в Америке вложили огромные средства в науку, так и Китай отреагировал национальной стратегией повсеместного распространения ИИ к 2030 году и внушительным финансированием осуществления этого плана.
В своей компании мы осознали значимость ИИ в 2012 году, когда в ЛСР сначала обратились несколько стартапов, применяющих ультрасовременные методики машинного обучения, а затем они хлынули потоком. Обращения следовали почти из всех сфер: исследовательской фармакологии, клиентского обслуживания, производства, контроля качества, розничных продаж, медицинской техники. Технологии были мощными, широко применимыми, обещали заметное повышение эффективности. Понимая их экономическую ценность, мы углубились в работу. Мы знали, что ИИ будет развиваться в той же экономике, что и остальные технологии.
Говоря проще, технология сама по себе потрясающая. Как метко сказал знаменитый венчурный инвестор Стив Джурвертсон: «Почти каждый продукт, который в ближайшие пять лет покажется волшебством, наверняка будет построен на этих же алгоритмах»[6]. Джурвертсон назвал ИИ «волшебством», что перекликается с распространенным сюжетом таких фильмов, как «2001 год: Космическая одиссея», «Звездные войны», «Бегущий по лезвию», и недавних «Она», «Превосходство» и «Из машины».
Мы согласны с Джурвертсоном: это действительно волшебство. И наша задача как экономистов состоит в том, чтобы воплотить волшебство ИИ в простой, понятной и практичной форме.
Отделить зерна от плевел
Экономисты смотрят на мир иначе, чем большинство людей. Мы воспринимаем все относительно схемы, управляемой такими силами, как спрос и предложение, производство и потребление, цена и издержки. Иногда экономисты расходятся во мнениях, но всегда действуют в рамках общей схемы. Мы оспариваем допущения и интерпретации, не сомневаясь в фундаментальных понятиях вроде роли дефицита и конкуренции в регулировании цен. Такой подход дает нам уникальную позицию наблюдателей, что можно отнести к плюсам нашей профессии. Минус же состоит в том, что наша точка зрения суха и бесстрастна, поэтому нас не очень жалуют на званых вечеринках. Тем не менее она добавляет ясности в принятии деловых решений.
Начнем с азов – цен. Когда снижается цена на какой-либо предмет, товар или услугу, спрос немедленно повышается. Более дешевые вещи покупают чаще. Так действует простейшая экономика, именно это сейчас и происходит с ИИ. Он повсюду: встроен в приложения для телефона, оптимизирует сети электроснабжения и заменил управляющего вашим портфелем акций. Скоро он будет возить вас по городу и прилетать к двери вашего дома с посылками.
Экономисты лучше всех умеют отделять зерна от плевел. Где другие замечают трансформационные инновации, мы видим всего лишь снижение цен. Но не все так просто. Чтобы понять влияние ИИ на вашу организацию, следует точно знать, как изменилась цена и как это отразится на экономической ситуации в целом. Только после этого можно приступать к разработке плана действий. История экономики учит, что последствия крупных инноваций часто проявляются в самых неожиданных местах.
3
4
5
6