Легко забыть, насколько страшным местом был мир эпохи Винера. Соединенные Штаты Америки и Советский Союз вели полномасштабную гонку вооружений, создавая водородные бомбы и ядерные боеголовки для межконтинентальных баллистических ракет, управляемых навигационными системами, которые отчасти разрабатывал сам Винер (чего он стыдился). Мне было четыре года, когда Винер умер. В 1964 году в начальной школе мы учились нырять под парты на случай ядерной атаки. Учитывая человеческое применение человеческих существ в ту эпоху, Винер, приведись ему увидеть нашу нынешнюю жизнь, в первую очередь порадовался бы тому, что мы до сих пор живы.
Глава 2
Ограничения «непрозрачных» обучаемых машин
Джуда Перл
профессор компьютерных наук и директор Лаборатории когнитивных систем в Калифорнийском университете (Лос-Анджелес). Последняя из опубликованных им книг, в соавторстве с Даной Маккензи, называется «Книга почему: новая наука причин и следствий».
В 1980-е годы Джуда Перл предложил новый подход к разработке искусственного интеллекта – на основании байесовских сетей. Эта вероятностная модель машинного мышления позволяла машинам функционировать – в сложном и неопределенном мире – в качестве «локомотивов доказательств», постоянно пересматривая свои убеждения в свете новых свидетельств.
Всего через несколько лет байесовские сети Перла целиком вытеснили предыдущие подходы к искусственному интеллекту, основанные на правилах. Появление методики глубинного обучения – когда компьютеры фактически самообучаются и становятся умнее, обрабатывая мириады данных, – поставило Джуду перед новым вызовом, ведь эта методика лишена прозрачности.
Признавая несомненные заслуги в области глубинного обучения таких коллег, как Майкл И. Джордан и Джеффри Хинтон[26], Перл не готов мириться с указанной непрозрачностью. Он намеревается изучить теоретические ограничения систем глубинного обучения и утверждает, что существуют базовые препятствия, которые не позволят этим системам уподобиться человеческому интеллекту, что бы мы ни делали. Используя вычислительные преимущества байесовских сетей, Джуда осознал, что комбинация простых графических моделей и данных также может применяться для репрезентации и выведения причинно-следственных связей. Значение этого открытия намного превосходит исходный контекст исследований в сфере искусственного интеллекта. Последняя книга Перла[27] объясняет широкой публике суть каузального мышления; можно сказать, что это своего рода учебник для начинающих, которые хотят научиться мыслить, будучи людьми.
Принципиально математический подход к причинности (каузальности) представляет собой значительный вклад Перла в сферу идей. Обращение к этому подходу уже принесло пользу практически во всех областях исследований, в первую очередь в сфере цифровой медицины (data-intensive health – букв. информационно емкого здравоохранения) и социальных наук.
Как бывший физик, я всегда интересовался кибернетикой. Пусть она не использовала в полной мере всю мощь машин Тьюринга, кибернетика – чрезвычайно прозрачная область знаний, возможно, потому, что она опирается на классическую теорию управления и теорию информации. Сегодня мы постепенно теряем эту прозрачность в связи с углублением процессов машинного обучения. По сути, налицо подгонка кривой, когда происходит корректировка значений в промежуточных слоях длинной цепочки ввода-вывода.
Мне встречались многие пользователи, сообщавшие, что «все работает хорошо, но мы не знаем, почему так». Стоит применить такой подход к большим наборам данных, и глубинное обучение приобретает собственную динамику, самостоятельно регулируется и оптимизируется – и в большинстве случаев дает правильные результаты. Но когда этого не случается, никто не понимает, где именно допущена ошибка и что именно следует исправлять. Важнее всего то, что невозможно узнать, имеется ошибка в программе или методике – или каким-то образом изменилась среда. Поэтому нам нужна иная прозрачность.
Кое-кто заявляет, что в прозрачности на самом деле нет необходимости. Мы не понимаем нейронную архитектуру человеческого мозга, но она исправно функционирует, а потому мы прощаем себе наше скудное понимание и охотно пользуемся таким удобным подспорьем. Точно так же, утверждают некоторые, нужно просто применять системы глубинного обучения и создавать машинный интеллект, даже если мы не понимаем, как все это работает. Что ж, до определенной степени я могу согласиться с этим доводом. Лично мне непрозрачность не нравится, поэтому я не стану тратить свое время на глубинное обучение, но я знаю, что оно занимает некое место в структуре интеллекта. Я знаю, что непрозрачные системы способны творить настоящие чудеса, и наш мозг является тому убедительным доказательством.
26
М. Джордан – статистик и специалист по машинному обучению, профессор Калифорнийского университета в Беркли; Дж. Хинтон – британо-канадский когнитивист, ведущий научный сотрудник проекта Google Brain, где ведутся исследования ИИ на основе методов глубинного обучения.
27
Judea Perl. Causal Inference in Statistics: A Primer (with Madelyn Glymour and Nicholas Jewell). NY, Wiley, 2016. –