Как видно из рис. 7, основными частями двигателя являются шаровидная камера сгорания 4, реактивное сопло 1, парогазогенератор, турбонасосный агрегат для подачи топлива и система управления. Продукты сгорания расширяются в сопле двигателя до давления на выходе, равного 0,8 кг/см2, и приобретают при этом большую скорость. Диаметр камеры сгорания в наиболее широкой части ее равняется 950 мм. Диаметр горловины сопла 410 мм, диаметр выходного сечения 740 мм. Длина двигателя составляет 1790 мм. Вес камеры сгорания с соплом 420 кг. В днище камеры сгорания расположено 18 горелок (форкамер) 3, разрез камеры показан на рис. 8. Кислород, подаваемый насосом 16, поступает внутрь горелок через трубопровод 5 в центральные форсунки, а спирт, выходящий из рубашки охлаждения, — через кольцо маленьких форсунок вокруг каждой горелки. Такая конструкция форкамер обеспечивает достаточно хорошее распыление и перемешивание топлива, необходимые для осуществления полного сгорания за то очень короткое время, пока топливо находится в камере сгорания (сотые доли секунды).
Как следует из самого названия, в камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле — преобразование тепловой энергии продуктов сгорания в кинетическую энергию струи газов, вытекающих из двигателя в атмосферу.
Давление в камере сгорания порядка 16–17 атм, а температура достигает 2400–2500℃, вследствие чего в камере сгорания возникает большая теплонапряженность, т. е. в ней выделяется огромное количество тепла в единицу времени. Камера сгорания ЖРД по теплонапряженности значительно превосходит все другие известные в технике топочные устройства — топки паровых котлов, цилиндры двигателей внутреннего сгорания, камеры сгорания воздушно-реактивных двигателей и др. Для сравнения скажем, что в камере сгорания ЖРД в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить около 600 000 кг воды! Поэтому неохлаждаемые ракетные двигатели могут работать только в течение 25 секунд[13].
Для того чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, а также и стенки сопла.
Охлаждение двигателя осуществляется следующим образом.
Основная масса спирта, прежде чем попасть в форсунки, по трубопроводам 7 (см. рис. 7) подается в рубашку охлаждения, образованную двойными стенками камеры и сопла. Двигаясь со значительной скоростью по этой рубашке, спирт отбирает тепло от внутренних стенок камеры и сопла и охлаждает их. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру. Но одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие отверстия 2, расположенные в нескольких кольцевых поясах, и через эти отверстия внутрь камеры и сопла поступает спирт (около 0,1 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем самым снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, достигает 2500℃, температура внутренней поверхности стенок, как показали испытания, не превышает 1000℃.
Сжатие и подача топлива в двигателе производятся центробежными насосами 16 и 14. Для привода насосов служит парогазовая турбина 16. Турбина и два насоса, объединенные общим валом, образуют турбонасосный агрегат. Мощность турбонасосного агрегата 465 л. с., вес 160 кг.
13
См. Д. Саттон, Ракетные двигатели, Москва, Издательство иностранной литературы, 1952, стр. 150.