1. Компоненты топлива подаются в камеру сгорания одновременно, и горение продолжается непрерывно.
2. Протекание рабочего процесса не зависит от условий внешней среды, поэтому ЖРД могут развивать тягу как в сравнительно плотной атмосфере, так и в безвоздушном пространстве.
3. Величина развиваемой двигателями тяги не зависит от скорости движения аппарата. С увеличением высоты полета тяга возрастает, достигая максимально возможной для данных размеров двигателя величины в пустоте; максимальную тягу двигатель может развить за очень малый промежуток времени.
4. Охлаждающей жидкостью является один из компонентов топлива, в большинстве случаев окислитель, весовой секундный расход которого для некоторых составов топлива значительно превышает расход горючего; тепло, воспринимаемое окислителем, вносится им вновь в камеру сгорания, поэтому потери при отдаче тепла стенкам незначительны.
5. Объем камер сгорания незначительный. Удельный вес двигательной установки невелик, порядка 0,04.
Этим двигателям свойственны и недостатки:
1. Большой весовой секундный и удельный расход топлива, значительно превышающий удельный расход топлива ВРД (воздушно-реактивного двигателя), а именно порядка 18, что определяет сравнительно малое время действия (в большинстве выполненных конструкций в пределах одной минуты).
2. Агрессивность к металлам компонентов топлива вызывает затруднения при их хранении и использовании.
3. Сложность осуществления и регулирования подачи компонентов топлива и систем зажигания.
Другим типом ракетных двигателей, который применяется в настоящее время в ракетах для исследования верхних слоев атмосферы и может быть использован при запуске ИСЗ, является пороховой ракетный двигатель (сокращенно ПРД). Такой двигатель издавна используется в боевых пороховых ракетах. Следует отметить, что русские пороховые ракеты по своим тактическим свойствам всегда значительно превосходили иностранные образцы. Уже в 1815 году талантливый офицер русской армии А. Д. Засядко приступил к созданию боевых ракет. Ракеты генерал-майора А. Д. Засядко использовались в бою и показали хорошую маневренность, дальнобойность и меткость, обеспечившие им значительный боевой успех. В середине 19-го века ракеты значительно усовершенствовал генерал-лейтенант К. И. Константинов, талантливейший изобретатель и ученый. Так, им были значительно усовершенствованы станки для производства ракет, устройства для пуска ракет и повышены боевые свойства самих ракет. Дальнейшее развитие пороховых ракет было в центре внимания русских и советских ученых. Широко известно, что прославленные гвардейские минометные части покрыли советское реактивное оружие неувядаемой славой.
Пороховой ракетный двигатель (рис. 10) является самым простым по своему устройству из всех известных нам типов ракетных двигателей. Основными конструктивными элементами его являются: корпус 1, камера сгорания 2, сопло 3, заряд пороха 4 и диафрагма 5. Так как, в отличие от других реактивных двигателей, в ПРД весь запас топлива сосредоточен в самой камере сгорания, то и размеры ее определяются количеством содержащегося в ней пороха, необходимого для обеспечения расчетной дальности полета ракеты. Сопло 3, как и в любой ракете, предназначено для преобразования тепловой энергии пороховых газов в кинетическую энергию, которая определяет величину реактивной силы. Заряд пороха 4 состоит из пороховых трубок, или шашек, могущих иметь различную форму и плотность. При выборе формы, плотности и размеров пороховых шашек руководствуются необходимостью обеспечить более продолжительное их горение и постоянство давления в камере сгорания при переменном ее объеме. Диафрагма с отверстиями 5 удерживает пороховые шашки в камере в заданном положении. Передний воспламенитель 6 обеспечивает условия равномерного и надежного воспламенения всего порохового заряда, а задний воспламенитель 7 — начало воспламенения пороха. Дно камеры сгорания (отверстия решетки) 8 является местом приложения основной составляющей тяги.