Чтобы следить за движением спутника, надо его видеть. Спутник, не обладая собственным свечением, будет, подобно Луне, отражать падающие на него солнечные лучи. Расчеты показывают, что шар поперечником в 1 м, отражающий свет как Луна, будет с расстояния в 900 км казаться звездочкой 7-й звездной величины, а с расстояния 200 км — звездочкой 3-й величины. Напомним для сравнения, что блеск самых слабых из звезд, доступных невооруженному глазу, равен 6-й звездной величине, а наиболее слабые звезды, зафиксированные с помощью крупнейших современных телескопов на фотопластинке, имеют блеск 23-й звездной величины.
Таким образом, некоторые из спутников удастся увидеть не только в телескоп, но и невооруженным глазом. Правда, видны они будут не всегда. Как известно, Земля отбрасывает в мировое пространство огромный конус тени. На расстоянии 200 км от поверхности Земли поперечник конуса близок к 13 000 км. Когда спутник попадет в тень Земли, он станет невидимым — произойдет затмение спутника, аналогичное лунному затмению.
Только на фоне утренних или вечерних зорь спутник будет доступен наблюдателю. Измерительные круги, которыми снабжены телескопы, позволят точно фиксировать положение спутника в пространстве.
Вполне возможно, что уже первые спутники Земли будут снабжены автоматическими приборами, но поскольку приборы боятся резких сотрясений, придется использовать иную систему запуска такого спутника. Не снаряд, выстреливаемый из ракеты, а третья, последняя ступень трехступенчатой ракеты — таков, по-видимому, наилучший вариант запуска подобного спутника (рис. 18).
Преимущества рассматриваемого проекта очевидны. В отличие от спутника-снаряда, спутник-ракета постепенно наберет нужную круговую скорость, а потому ускорения спутника не будут чрезмерными. Это сохранит главную часть спутника — приборы. Разумеется, по достижении требуемой круговой скорости ракетный двигатель автоматически остановится и спутник начнет облет земного шара под действием единственной силы — собственного веса.
Какие же приборы поместят внутрь спутника и что они должны регистрировать?
Снаряжение первых спутников Земли будет, вероятно, во многом напоминать оборудование современных ракет, предназначенных для исследования атмосферы. Его можно разделить на следующие основные группы:
1. измерители температуры,
2. приборы для взятия проб воздуха,
3. измерители атмосферного движения,
4. спектрограф для фотографирования солнечного спектра,
5. счетчик космических лучей,
6. киносъемочный аппарат,
7. радиоаппаратура.
Рассмотрим принцип действия каждого из приборов и оценим возможность их применения на искусственном спутнике Земли.
Измерение температуры воздуха на быстро летящей ракете — сложное дело. Обычные термометры для этой цели непригодны, так как разреженный воздух больших высот не успеет их нагреть. Измерителями температуры должны быть приборы, очень быстро реагирующие на ее изменения. Такие приборы изобретены — они называются термисторами. В них используются вещества, электрическое сопротивление которых очень быстро меняется с изменением температуры. С помощью термисторов можно практически мгновенно обнаружить изменения температуры на тысячные доли градуса! Для стремительно летящих стратосферных ракет применение термисторов в качестве измерителей температур неизбежно.
Иная обстановка сложится на спутнике.
Обращаясь вокруг Земли по круговой орбите и практически за границами земной атмосферы, спутник будет находиться в условиях сравнительно постоянного теплового режима. На «дневном» участке своего пути он обогревается лучами Солнца. Попадая же в тень Земли, спутник при этом подвергается значительному охлаждению. Чередование нагрева и охлаждения спутника станет регулярно повторяющимся явлением.
Температура есть степень нагрева какого-нибудь тела, есть мера энергии движения составляющих его элементарных частиц (молекул, атомов). Какую же температуру будут измерять приборы спутника?
Вокруг спутника — безвоздушное пространство. Воздуха на высотах в сотни километров так мало, что измерить его температуру невозможно.