Однако, несмотря на силу отрицательных чисел, одни они не могли подарить нам современный мир. Возможно, вы заметили, что на числовой прямой Валлиса нет чисел – есть лишь отрезки, отмеченные буквами A, B, C и D. Буквы соответствуют тому, что мы обозначили бы числами 0, 5, 3 и –3, и Валлис неспроста решил отказаться от них. Еще один важнейший математический инструмент – ноль – пока не получил признания.
История нуля восходит к моменту, когда царь Шульги ввел в своем математическом государстве “позиционную систему счисления”. Мы очень быстро усваиваем, что, записывая число, такое как 1234, мы можем присваивать отдельным цифрам разные значения в зависимости от того, какую позицию они занимают. Низшую позицию здесь занимает цифра 4, которая обозначает четыре элемента, например четыре яблока. Если выражаться математическим языком, наша система имеет основание 10 и называется десятичной, поскольку мы группируем числа в десятки, и потому цифра в следующей позиции обозначает три десятка, то есть 30. Двигаясь дальше влево, мы получаем результат умножения предыдущей позиции на десять, то есть десять десятков, или сотню. В числе 1234 их две. Наконец, остается одна группа из десяти сотен, то есть тысяча. В итоге получается число 1234.
Позиционная система счисления царя Шульги была шестидесятеричной, а не десятичной. Сложно сказать, почему именно такая техника записи чисел обрела в древности такую популярность. Одни историки математики видят причину в том, что число 60 дает целые частные при делении на любое из целых чисел с 1 до 6 (и еще на шесть чисел). Благодаря этому с ним легко работать, особенно при делении товаров, цен и мер. Другие предполагают, что удобство шестидесятеричной системы объясняется примерным числом дней в году. Какой бы ни была причина, эта система оставила наследие: именно в ближневосточных царствах, которые в итоге образовали Вавилон, круг разделили на 360 градусов, градус и час – на 60 минут, а минуту – на 60 секунд.
Вавилонская шестидесятеричная система похожа на нашу десятичную: например, число 34 в ней записывается тремя символами, обозначающими десятки, и четырьмя символами, обозначающими единицы. Но условных знаков в ней хватает лишь для записи чисел до 59, поэтому десятичное число 424 000 в шестидесятеричной системе состояло бы из сорока единиц, 46 групп по шестьдесят, 57 групп по шестьдесят на шестьдесят (602) и 1 группы по шестьдесят на шестьдесят на шестьдесят (603).
Такая запись (как и наша) удобна, пока в числе нет отсутствующих “групп”. Но как же записать в десятичной системе число 4005, в котором нет ни сотен, ни десятков? Нам нужно было найти способ обозначать “отсутствие” при записи числа. Так мы и начали использовать знак, который сегодня называем нулем.
Нулем он был не всегда. В этой истории много белых пятен, но, судя по всему, в Вавилоне пустая позиция обозначалась наклонным клинописным символом
Долг минус ноль – это долг.
Достаток минус ноль – это достаток.
Ноль минус ноль – это ноль.
Ноль минус долг – это достаток.
Ноль минус достаток – это долг.
При умножении нуля на долг или достаток получается ноль.
При умножении нуля на ноль получается ноль.
Запад с нулем познакомил персидский математик и астроном X века Мухаммад ибн Муса аль-Хорезми. В своих книгах он использовал цифры, которые теперь называются арабскими или индо-арабскими, и включал в их число ноль, подчеркивая его значимость для позиционной системы счисления. Он называл его “сифр”, что в переводе значит “пустой”. В латыни это слово превратилось в zephyrum, и от него итальянцы образовали слово zero, то есть “ноль”.