Проекция Снайдера называется космической косой проекцией Меркатора. По мнению одного специалиста, это “одна из самых сложных проекций, разработанных человеком”. Среди прочего она предполагает применение 82 уравнений к каждой единице информации. В результате получается проекция Меркатора, построенная с движущейся наблюдательной точки и допускающая лишь минимальное искажение при изображении области, находящейся прямо под спутником. Нам очень сложно понять, как именно работает эта система, но любопытно отметить, что статья Снайдера с описанием лежащих в ее основе идей пестрит синусами, косинусами и тангенсами. Прошло несколько тысяч лет с тех пор, как мы постигли свойства треугольника, а они по-прежнему служат нам верой и правдой.
Космическая косая проекция Меркатора стала важнейшим шагом на пути к созданию спутниковых карт нашей планеты. Они жизненно необходимы для всех аспектов цивилизации XXI века, от проведения военных операций и осуществления навигации до прогнозирования погоды, защиты окружающей среды и мониторинга климата. Проекция Снайдера дала нам карты Google и Apple, спутниковую навигацию в автомобилях и все остальные технологии цифровой навигации. Наконец-то мы увидели Землю глазами бога. Мы добились этого за шестьсот лет – если вести отсчет от того момента, когда Генрих Мореплаватель приступил к упорным поискам пресвитера Иоанна.
Учитывая, сколько внимания я уделил треугольникам, мне не было бы прощения, если бы я лишь по касательной прошелся по свойствам кругов. Они тоже сыграли весьма важную роль в нашей истории.
Как и треугольники, круги всегда интересовали людей из практических соображений. Вычисляя площадь треугольников и прямоугольников, древние правители понимали, какой налог взимать с землевладельца, поскольку любое поле, какой бы формы оно ни было, можно грубо поделить на треугольники и прямоугольники. Благодаря этому становится проще определить общую площадь поля, и налоговый инспектор понимает, какой налог подлежит уплате в казну. Умение вычислять объем цилиндрических сосудов и силосных зернохранилищ (или даже конических горок специй) также важно для обложения налогом собранного урожая, а также купленных или произведенных товаров. А эти объемы не вычислить, не зная, какими свойствами обладает круг.
Первым делом необходимо получить достаточно точное значение отношения длины окружности к диаметру круга. Это отношение обозначается греческой буквой π (пи), и длина окружности круга равняется его диаметру, умноженному на π. Многие древние культуры не стремились к точности. Вавилоняне и первые китайские геометры приравнивали значение π к 3,0, а древние египтяне около 1500 года до нашей эры – к 3,16. Архимед вычислил число π, вписав в круг многоугольник и разделив его на треугольники, основаниями которых служили стороны многоугольника (а другими сторонами – радиусы круга). Если вычислить площадь каждого из этих равнобедренных треугольников, можно узнать площадь многоугольника. Чем больше треугольников вы построите, тем ближе площадь многоугольника станет к площади круга и тем точнее окажется полученное значение числа π. Площадь всех этих треугольников примерно соответствует площади круга, равной πr2. Поскольку вам известен радиус круга, вы можете вычислить значение π. К 240 году до нашей эры, изучая свойства колес, Архимед поместил значение π в диапазоне от 3,140 до 3,142 (используя 96-угольник).
Метод Архимеда для вычисления π с помощью треугольников, вписанных в круг
Около 450 года нашей эры китайский геометр Цзу Чунчжи построил 24576-угольник и получил значение π в диапазоне от 3,1415926 до 3,1415927. Сегодня мы знаем, что π равняется 3,14159265358979…, и определили многие следующие триллионы его десятичных знаков.
Если бы на Землю высадились инопланетяне, их поразило бы, насколько мы неравнодушны к числу π. Ни одно другое число не изучалось нами с таким же рвением. О нем снимают художественные и документальные фильмы, ему посвящают песни, оно даже стало объектом искусства. Может, я слишком люблю треугольники, но мне сложно понять, что такого в числе π. Неужели дело в том, что у него нет конца, а цифры в нем располагаются без четкой закономерности? Это довольно любопытно, ведь у круга тоже нет конца, но так ли это отличается от бесконечного хвоста квадратного корня из 2, который дают нам треугольники?