Дело в том, что ведение учета невозможно без двух других математических инноваций: отрицательных чисел и понятия нуля. И хотя сегодня они общеприняты и кажутся простыми, обе идеи поначалу вызывали споры, а потому сегодняшнее положение они смогли занять лишь через несколько сотен лет после своего появления.
Странно понимать, что мы тысячелетиями производили вычитание, хотя никто не мог ответить на вопрос “Сколько будет 1 минус 2?”. Но виноват в этом опять же наш мозг. Мы просто не можем представить себе минус одно яблоко, поэтому нам нечего и надеяться на врожденное понимание отрицательных чисел. Они стали еще одним огромным скачком, еще одной концепцией, которую человеку пришлось создать с нуля. Однако, как и дроби, отрицательные числа оказались слишком полезными, чтобы их не изобрести.
История у отрицательных чисел получилась весьма запутанной. Трактат “Артхашастра”, составленный древнеиндийским учителем Каутильей, вероятно, около 300 года до нашей эры, свидетельствует, что бухгалтерское дело в Индии было в то время уже достаточно развито: индусам были знакомы понятия активов, долга, выручки, расходов и доходов, и есть основания предположить, что индийские счетоводы, возможно, уже тогда обозначали долги отрицательными числами. В сочинении “Математика в девяти книгах” китайский математик Чжан Цан проводил расчеты с отрицательными числами. Мы точно не знаем, когда оно было написано – вероятнее всего, между 200 годом до нашей эры и 50 годом нашей эры, – но в нем говорится, что красные палочки обозначают положительные числа, а черные палочки соответствуют отрицательным числам. Однако, несмотря на применение отрицательных чисел в арифметике, Чжан Цан не мог смириться с тем, что их можно получать и при таких операциях, как решение уравнений. Судя по всему, в его представлении они были чисто практическим инструментом коммерции и торговли.
В 628 году нашей эры индийский математик Брахмагупта также предлагал выражать долг отрицательными числами. Он даже представил правила умножения (произведение) и деления (частное) при работе с положительными числами (достатками) и отрицательными числами (долгами):
Произведение или частное двух достатков – один достаток.
Произведение или частное двух долгов – один достаток.
Произведение или частное одного долга и одного достатка – долг.
Произведение или частное одного достатка и одного долга – долг.
Выражаясь современным языком, мы сказали бы:
При умножении или делении двух положительных чисел получается положительное число.
При умножении или делении двух отрицательных чисел получается положительное число.
При умножении или делении отрицательного числа на положительное число получается отрицательное число.
При умножении или делении положительного числа на отрицательное число получается отрицательное число.
Возможно, эти правила знакомы вам в другой формулировке: “Минус на минус дает плюс, а плюс на минус дает минус”.
Очевидно, к этому моменту индийские счетоводы уже свободно обращались с отрицательными числами. Но в западном мире прогресс шел гораздо медленнее. Проблема была в том, что Запад унаследовал математику от древних греков, а те обожали целые числа. Они могли делить их, получая дроби, но, какими бы маленькими ни становились числа, они никогда не оказывались отрицательными.
Первое осторожное упоминание отрицательных чисел в западном мире было сделано в “Книге абака”, написанной в 1202 году. Вам, возможно, знакомо имя ее автора – Фибоначчи. На самом деле его звали иначе, а это прозвище ему придумал биограф несколько столетий спустя. Но Леонардо Пизанский действительно был сыном Гильермо Боначчи (отсюда и “фи” – сын – Боначчи), и прозвище так прочно прикрепилось к нему, что сейчас именно оно считается одним из величайших имен в математике.
На заре своей карьеры Фибоначчи служил на итальянской таможне и работал в Алжире. Сопровождая отца в поездках в такие страны, как Сирия и Египет, он рано познакомился с математикой, выходящей за итальянскую традицию, и узнал множество операций и идей, которые казались радикальными, революционными, а иногда просто полезными. В “Книге абака” содержится немало математических изобретений, задач, решений и курьезов, включая правила (основанные на темпе бесконтрольного увеличения популяции кроликов) составления числовой последовательности, которая теперь носит имя Фибоначчи[23]. Но также в книге рассматривалось использование отрицательных чисел как общепризнанного математического инструмента. В качестве примера Фибоначчи предложил задачу, в которой четыре человека в заданных пропорциях делят деньги из кошелька:
23
Последовательность Фибоначчи начинается с 0 и 1, а каждое следующее число в ней получается путем сложения двух предыдущих. Первые 12 чисел таковы: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и 89.