Выбрать главу

Оставим античность и обратимся к современности, к проблемам, стоящим перед страховыми компаниями. Предположим, вы хотите застраховать свою жизнь с тем, чтобы ваша вдова получила 1000 долларов после вашей смерти. Сколько вы должны платить каждый год? Предположим, что вы в таком возрасте, что среднестатистический мужчина живет еще 20 лет. Если вы платите 50 долларов в год, то в течение 20 лет вы заплатите 1000 долларов, и, на первый взгляд, вы сочтете правильным то, что страховая компания назначит вам ежегодный взнос в 50 долларов. На самом деле это будет слишком высокий взнос, поскольку существует еще процентный доход. Предположим, вы прожили еще 20 лет, ваши первые 50 долларов страховая компания инвестировала в какое-либо дело и получила прибыль; прибыль также была инвестирована, и т. д.; вы можете подсчитать, сколько прибыли принесут ваши 50 долларов за 20 лет постоянного инвестирования. Подсчитайте, что следующие 50 долларов будут инвестироваться в течение 19 лет и тоже принесут прибыль, и т. д. Таким образом, ваши взносы в течение 20 лет принесут страховой компании гораздо больше, чем 1000 долларов. Действительно, если страховая компания получает 4% прибыли со своих инвестиций, ваши ежегодные взносы в 50 долларов принесут ей в течение 20 лет 1500 долларов.

Сделав подобные расчеты, вы узнаете, как нужно делать расчеты в так называемых «геометрических прогрессиях».

«Геометрическая прогрессия» – это ряды чисел, в которых каждое число, кроме первого, является кратным предыдущему. Например, 1, 2, 4, 8,16,… – это геометрическая прогрессия, в которой каждое число является удвоением предыдущего; 1, 3, 9, 27, 81,… – это геометрическая прогрессия, в которой каждое число является утроением предыдущего; 1,1/2,1/4,1/8,1/16,… – это прогрессия, в которой каждое число является половиной предыдущего, и т. д.

Вернемся теперь к нашему доллару, инвестированному исходя из 4% годовых. В конце года это будет 1,04 доллара. В конце второго года у вас будет 1,04 доллара плюс 4% от этой суммы; это 1,04 раза по 1,04, т. е. (1,04)2. В конце третьего года это будет (1,04)3 и т. д. Таким образом, если вы будете платить каждый год по одному доллару в течение 20 лет, то к концу этих 20 лет то, что вы заплатили, станет (1,04)20 + (1,04)19 +… + (1,04)2 + 1,04, что представляет собой геометрическую прогрессию.

Древние греки проявляли большой интерес к геометрическим прогрессиям, особенно к прогрессиям, уходящим в бесконечность. Например, 1/2 +1/4 + 1/8 + 1/16 +…в сумме никогда не дадут 1. Так же обстоит дело и с периодическими десятичными дробями.9999… Все это создает множество загадок, на решение которых уходит очень много времени.

Античная геометрия занималась не только линиями и кругами, но также и «коническими сечениями», которые представляют собой разного рода кривые линии – сочетания плоскости и конуса; иначе их можно определить, как всевозможные формы теней, отбрасываемых кругом на стену. Греки изучали их удовольствия ради, а не для практического использования, которое они презирали. Однако 2000 лет спустя, в XVII в., эти исследования вдруг приобрели огромное практическое значение. Развитие артиллерии показало людям, что если вы хотите попасть в удаленный объект, то должны целиться не прямо в этот объект, а немного выше него. Никто не знал точную траекторию пушечного ядра, но военное командование стремилось это узнать. Галилей, служивший у герцога Тосканского, нашел ответ: пушечные ядра движутся по параболе, представляющей особую разновидность конических сечений. Примерно в то же самое время сделал свое открытие и Кеплер: траекторией движения планет вокруг Солнца является эллипс – другая разновидность конических сечений. Таким образом, все знания, полученные раньше при изучении конических сечений, стали использоваться в военном деле, навигации и астрономии.

Чуть выше я сказал, что конические сечения – это тени кругов. Если у вас есть лампа с круглым отверстием, то вы сами для себя можете сделать различного рода конические сечения. Тень отверстия лампы на потолке (если только он не кривой) будет кругом, а вот его тень на стене будет гиперболой. Если вы возьмете кусок бумаги и подержите над отверстием лампы, то, если вы держите бумагу не точно в горизонтальном положении, тенью будет эллипс; если вы наклоните бумагу еще больше, эллипс станет длиннее и тоньше; первая тень, не являющаяся эллипсом, если вы наклоните бумагу еще больше, будет параболой; а после этого она станет гиперболой. Капли в фонтане падают вниз по параболе, так же, как и камни, падающие с утеса.

С математической точки зрения, как каждый может заметить, эффект теней тот же самый, что у перспективы. Изучение свойств, общих у фигуры со всевозможными тенями, называется «проективной» геометрией. Несмотря на то, что эта разновидность геометрии значительно легче той, которой занимались греки, она была открыта гораздо позже. Одним из первых это сделал Паскаль, к сожалению, решивший, что религиозные медитации важнее математики.

Я до сих пор ничего не говорил об алгебре, которая зародилась во времена поздних александрийских греков, но в целом была разработана сначала арабами, а потом учеными в XVI и XVII вв. Алгебра кажется более сложной, чем геометрия, потому что геометрия имеет дело с конкретными видимыми фигурами, в то время как x и y в алгебре – совершенно абстрактные сущности. Но алгебра всего лишь обобщенная арифметика: когда существует некоторое суждение, истинное в отношении любого числа, то пустой тратой времени будет доказательство истинности этого суждения относительно каждого конкретного числа, поэтому мы говорим «пусть х будет любым числом» и продолжаем наше рассуждение. Предположим, например, вы заметили, что 1 + 3 = 4, что есть 22; 1 + 3 + 5 = 9, что есть У; 1 + 3 + 5 + 7 = 16, что есть 42. Удивившись, вы захотите предположить, не является ли это общим правилом. В этом случае вам нужна алгебра, чтобы выразить все эти конкретные примеры в одном простом вопросе, который вы зададите самому себе: «Всегда ли сумма первых п нечетных чисел равна n2?» Когда вы сможете понять этот вопрос, то легко найдете доказательство тому, что ответом будет да. Если вы не используете букву n, то вынуждены будете использовать очень сложный язык. Вы можете сказать: «Если сложить любое количество нечетных чисел, начиная с 1 и не считая 0, то сумма будет равна квадрату числа сложенных нечетных чисел». Это суждение гораздо труднее понять. Когда же вы сформулируете более сложные вопросы, то вскоре станет практически невозможно понимать их, не используя буквы вместо фразы «любое число».

Даже проблемы, сформулированные относительно конкретных чисел, часто гораздо легче решать, используя вместо числа букву х. В юности я долго ломал голову над следующей загадкой: «Если рыба весит 5 фунтов и половину своего собственного веса, то сколько она весит?». Многие склонны ответить 7,5 фунтов. Если вы начнете рассуждение с «пусть x – вес рыбы» и продолжите «5 фунтов плюс половина x равно х», то очевидно, что 6 фунтов – это половина х, следовательно х равно 10 фунтам. Но эта проблема слишком проста, чтобы решать ее с помощью "х". Возьмем немногим более сложную задачу. Полиция преследует преступника по определенному шоссе, который выехал 10 минут назад; полицейская машина может ехать со скоростью 70 миль в час, а машина преступника только со скоростью 60 миль в час. Сколько времени потребуется полиции чтобы поймать преступника? Ответ, конечно, 1 час. Это «ясно» любому человеку; но если я скажу, что преступник выехал 7 минут назад, его машина может ехать со скоростью 53 мили в час, а полицейская машина со скоростью 67 миль в час, то вы сочтете более удобным начать свое рассуждение таким образом: пусть t – время, необходимое для того, чтобы поймать преступника. Для мальчика или девочки, начинающих изучать алгебру, трудно привыкнуть к алгебраическому использованию букв. Лучше сначала показать ученикам огромное количество конкретных примеров общих формул. Например: