Туннельные диоды. Еще один интересный пример использования параметра динамического сопротивления связан с туннельным диодом. Его вольт-амперная характеристика показана на рис. 1.15.
Рис. 1.15.
В области между точками А и В он обладает отрицательным динамическим сопротивлением. Из этого вытекает важное следствие: делитель напряжения, состоящий из резистора и туннельного диода, может работать как усилитель (рис. 1.16).
Рис. 1.16.
Воспользуемся уравнением для делителя напряжения и для изменяющегося напряжения Uсигн, получим
Uвых = [R/(R + rt)]Uсигн,
где rt - динамическое сопротивление туннельного диода при рабочем токе, Uсигн — изменение малого сигнала, которое до настоящего момента мы обозначали через ΔUсигн (в дальнейшем мы будем пользоваться этим широко распространенным обозначением). Для туннельного диода rt.дин < 0. Значит, ΔU/ΔI < 0 или u/i < 0 для области вольт-амперной характеристики туннельного диода, заключенной между точками А и В. Если rt.дин < 0, то знаменатель становится близким к нулю, и схема начинает работать как усилитель. Напряжение uбат создает постоянный ток, или смещение, которое смещает рабочую точку в область отрицательного сопротивления. (Безусловно, во всяком усилительном приборе необходимо иметь источник питания.)
И наконец, в двух словах история туннельных диодов: они появились в конце 50-х годов, и с ними сразу стали связывать пути разрешения множества проблем схемотехники. Их высокое быстродействие дало основание предположить, что они произведут революцию в области вычислительной техники. К сожалению, оказалось, что эти элементы сложны в использовании; это обстоятельство, а также успешное развитие транзисторов привело к тому, что туннельные диоды сейчас почти не находят применения.
Позже при рассмотрении активных фильтров мы вернемся к явлению отрицательного сопротивления. Тогда вы познакомитесь со схемой преобразователя отрицательного импеданса, которая обеспечивает наряду с другими характеристиками настоящее (а не динамическое) отрицательное сопротивление.
Сигналы
Следующий раздел главы посвящен конденсаторам — элементам, свойства которых зависят от того, как изменяются в схеме напряжения и токи.
Закономерности, с которыми мы познакомили вас при изучении цепей постоянного тока (закон Ома, эквивалентные преобразования схем и др.), сохраняют свою силу и в тех случаях, когда напряжения и токи изменяются по времени. Для лучшего понимания работы цепей переменного тока полезно изучить некоторые распространенные типы сигналов (напряжений, которые определенным образом изменяются во времени).
Синусоидальные сигналы распространены наиболее широко; именно их мы извлекаем из стенной розетки. Если вы услышите выражение «10 мкВ на частоте 1 МГц», то знайте, что речь идет о синусоидальном сигнале. Математическое выражение, описывающее синусоидальное напряжение, имеет вид
U = Asin2πft,
где А — амплитуда сигнала, f — частота в циклах в секунду или в герцах.
Синусоидальный сигнал показан на рис. 1.17.
Рис. 1.17. Синусоидальная зависимость изменения амплитуды А от частоты f
Иногда бывает полезно переместить начало координат (t = 0) в точку, соответствующую произвольному моменту времени; в этом случае в выражение для синусоидального напряжения следует включить фазу
U = Asin(2πft + )
Можно также воспользоваться понятием угловая частота и переписать выражение для синусоидального сигнала в другом виде:
U = Asinωt,
где ω — угловая частота в радианах в 1 с.
Если вы вспомните, что ω = 2πf, то все станет на свои места. Основное достоинство синусоидальной функции (а также основная причина столь широкого распространения синусоидальных сигналов) состоит в том, что эта функция является решением целого ряда линейных дифференциальных уравнений, описывающих как физические явления, так и свойства линейных цепей. Линейная цепь обладает следующим свойством: выходной сигнал, порожденный суммой двух входных сигналов, равен сумме двух выходных сигналов, каждый из которых порожден входными сигналами, действующими не в совокупности, а отдельно: иначе говоря, если Вых. (А) — выходной сигнал, порожденный сигналом А, то для линейной цепи справедливо следующее равенство: Вых. (А + В) = Вых. (А) + Вых. (В). Если на входе линейной цепи действует синусоидальный сигнал, то на выходе также получим синусоидальный сигнал, но в общем случае его амплитуда и фаза будут другими. Это утверждение справедливо только для синусоидального сигнала. На практике принято оценивать поведение схемы по ее амплитудно-частотной характеристике, показывающей, как изменяется амплитуда синусоидального сигнала в зависимости от частоты. Усилитель звуковой частоты, например, имеет «плоскую» амплитудно-частотную характеристику в диапазоне от 20 Гц до 20 кГц.