Выбрать главу

Упражнение 1.20. Покажите, что последовательное подключение конденсатора емкостью С = 1/ω2L к последовательной RL-цепи делает коэффициент мощности этой цепи равным единице. Затем рассмотрите параллельную цепь и параллельно подключенный конденсатор.

Делители напряжения: обобщение. Простейший делитель напряжения (рис. 1.5) состоит из пары последовательно соединенных резисторов. Входное напряжение измеряется в верхней точке относительно земли, а выходное-в точке соединения резисторов относительно земли. От простейшего резистивного делителя перейдем к более общей схеме делителя, если один или оба резистора заменим на конденсатор или индуктивность, как, на рис. 1.51 (в более сложной схеме присутствуют и R, и L, и С).

Рис. 1.51. Обобщенная схема делителя напряжения: пара электрических цепей с произвольным импедансом.

Вообще говоря, в таком делителе отношение Uвых/Uвх не является постоянной величиной, а зависит от частоты. Анализ схемы выполняется без всяких хитроумных приемов:

IUвх/Zполн,

Zполн = Z1+ Z2,

UвыхZ2Uвх[Z2/(Z1+ Z2)].

Не будем сосредоточивать внимание на полученном результате, рассмотрим лучше некоторые простые, но очень важные примеры.

1.19. RС-фильтры

Благодаря тому что импеданс конденсатора, равный ZС = —j/ωС, зависит от частоты, с помощью конденсаторов и резисторов можно строить частотно-зависимые делители напряжения, которые будут пропускать только сигналы нужной частоты, а все остальные подавлять. В этом разделе вы познакомитесь с примерами простейших RС-фильтров, к которым мы будем неоднократно обращаться в дальнейшем. В гл. 5 и приложении 3 описаны более сложные фильтры.

Фильтры высоких частот. На рис. 1.52 показан делитель напряжения, состоящий из конденсатора и резистора.

Рис. 1.52. Фильтр высоких частот.

Согласно закону Ома для комплексных величин,

(Окончательный результат получен после умножения числителя и знаменателя на комплексное число, сопряженное знаменателю.) Итак, напряжение на резисторе R равно

Чаще всего нас интересует не фаза, а амплитуда Uвых:

Uвых = (UвыхU*вых)1/2 = UвхR/[R2 + (1/ω2С2)]1/2

Uвых UвхR1/(R1 + R2).

Векторное представление импеданса RС-цепи (рис. 1.53) показано на рис. 1.54.

Рис. 1.53.

Рис. 1.54.

Итак, если не принимать во внимание сдвиг фаз, а рассматривать только модули комплексных амплитуд, то «отклик» схемы будет определяться следующим образом:

Uвых UвхR[R2 + (1/ω2С2)]1/2 =

= Uвхf·RC/[1+(2πf·RC)2]1/2.

График этой зависимости представлен на рис. 1.55.

Рис. 1.55. Частотная характеристика фильтра высоких частот.

Такой же результат мы бы получили, если бы определили отношение модулей импедансов как в упражнении 1.17 и в примере перед этим упражнением; числитель представляет собой модуль импеданса нижнего плеча делителя R, а знаменатель-модуль импеданса последовательного соединения R и С.

Как вы видите, на высоких частотах выходное напряжение приблизительно равно входному (ω >= 1/RC), а на низких частотах выходное напряжение уменьшается до нуля. Мы пришли к важному результату, запомните его. Подобная схема, по понятным причинам, называется фильтром высоких частот. На практике ее используют очень широко.