Выбрать главу

Воспользовавшись определением динамического сопротивления, найдем, чему будет равно изменение напряжения при изменении питающего тока на 10 %: ΔURдинΔI = 10·0,1·0,001 = 10 мВ или ΔU/U = 0,002 = 0,2 %. Тем самым подтверждаются высокие стабилизирующие качества зенеровского диода. На практике часто приходится иметь дело с такими схемами, как показанная на рис. 1.14.

Рис. 1.14. Регулятор на зенеровском диоде.

Здесь ток, протекающий через стабилитрон и резистор, обусловлен имеющимся в той же схеме напряжением, большим чем напряжение стабилизации. При этом I = (UвхUвых)/R и ΔI = (ΔUвхΔUвых)/R, тогда ΔUвыхRдинΔI = (Rдин/R)(ΔUвхΔUвых) и наконец, ΔUвых = ΔUвxRдин/(R + Rдин). Следовательно, по отношению к изменениям напряжения схема ведет себя как делитель напряжения, в котором зенеровский диод заменен резистором, сопротивление которого равно динамическому сопротивлению диода при рабочем токе. Приведенный пример показывает, для чего нужен такой параметр, как динамическое сопротивление. Допустим, что в рассмотренной нами схеме входное напряжение изменяется в пределах от 15 до 20 В, а для получения стабильного источника напряжения 5,1 В используется зенеровский диод типа 1NA733 (зенеровский диод с напряжением 5,1 В и мощностью 1 Вт). Резистор сопротивлением 300 Ом обеспечит максимальный зенеровский ток, равный 50 мА: (20 — 5,1)/300.

Оценим изменение выходного напряжения, зная, что максимальное сопротивление для выбранного диода составляет 7 Ом при токе 50 мА. В диапазоне изменения входного напряжения ток через зенеровский диод изменяется от 50 мА до 33 мА; изменение тока на 17 мА вызывает изменение напряжения на выходе схемы, равное ΔU = RдинΔI, или 0,12 В. Другие примеры использования зенеровских диодов вы найдете в разд. 2.04 и 16.14. В реальных условиях зенеровский диод обеспечивает наивысшую стабильность, если он питается от источника тока, у которого по определению Rдин (ток не зависит от напряжения). Но источник тока представляет собой достаточно сложное устройство, и поэтому на практике мы чаще всего удовлетворяемся простым резистором.

Туннельные диоды. Еще один интересный пример использования параметра динамического сопротивления связан с туннельным диодом. Его вольт-амперная характеристика показана на рис. 1.15.

Рис. 1.15.

В области между точками А и В он обладает отрицательным динамическим сопротивлением. Из этого вытекает важное следствие: делитель напряжения, состоящий из резистора и туннельного диода, может работать как усилитель (рис. 1.16).

Рис. 1.16.

Воспользуемся уравнением для делителя напряжения и для изменяющегося напряжения Uсигн, получим

Uвых = [R/(R + rt)]Uсигн,

где rt - динамическое сопротивление туннельного диода при рабочем токе, Uсигн — изменение малого сигнала, которое до настоящего момента мы обозначали через ΔUсигн (в дальнейшем мы будем пользоваться этим широко распространенным обозначением). Для туннельного диода rt.дин < 0. Значит, ΔU/ΔI < 0 или u/i < 0 для области вольт-амперной характеристики туннельного диода, заключенной между точками А и В. Если rt.дин < 0, то знаменатель становится близким к нулю, и схема начинает работать как усилитель. Напряжение uбат создает постоянный ток, или смещение, которое смещает рабочую точку в область отрицательного сопротивления. (Безусловно, во всяком усилительном приборе необходимо иметь источник питания.)

И наконец, в двух словах история туннельных диодов: они появились в конце 50-х годов, и с ними сразу стали связывать пути разрешения множества проблем схемотехники. Их высокое быстродействие дало основание предположить, что они произведут революцию в области вычислительной техники. К сожалению, оказалось, что эти элементы сложны в использовании; это обстоятельство, а также успешное развитие транзисторов привело к тому, что туннельные диоды сейчас почти не находят применения.

Позже при рассмотрении активных фильтров мы вернемся к явлению отрицательного сопротивления. Тогда вы познакомитесь со схемой преобразователя отрицательного импеданса, которая обеспечивает наряду с другими характеристиками настоящее (а не динамическое) отрицательное сопротивление.

Сигналы

Следующий раздел главы посвящен конденсаторам — элементам, свойства которых зависят от того, как изменяются в схеме напряжения и токи.

Закономерности, с которыми мы познакомили вас при изучении цепей постоянного тока (закон Ома, эквивалентные преобразования схем и др.), сохраняют свою силу и в тех случаях, когда напряжения и токи изменяются по времени. Для лучшего понимания работы цепей переменного тока полезно изучить некоторые распространенные типы сигналов (напряжений, которые определенным образом изменяются во времени).

1.07. Синусоидальные сигналы

Синусоидальные сигналы распространены наиболее широко; именно их мы извлекаем из стенной розетки. Если вы услышите выражение «10 мкВ на частоте 1 МГц», то знайте, что речь идет о синусоидальном сигнале. Математическое выражение, описывающее синусоидальное напряжение, имеет вид

U = Asinft,

где А — амплитуда сигнала, f — частота в циклах в секунду или в герцах.

Синусоидальный сигнал показан на рис. 1.17.

Рис. 1.17. Синусоидальная зависимость изменения амплитуды А от частоты f

Иногда бывает полезно переместить начало координат (t = 0) в точку, соответствующую произвольному моменту времени; в этом случае в выражение для синусоидального напряжения следует включить фазу

U = Asin(2πft + )

Можно также воспользоваться понятием угловая частота и переписать выражение для синусоидального сигнала в другом виде:

U = Asinωt,

где ω — угловая частота в радианах в 1 с.

Если вы вспомните, что ω = 2πf, то все станет на свои места. Основное достоинство синусоидальной функции (а также основная причина столь широкого распространения синусоидальных сигналов) состоит в том, что эта функция является решением целого ряда линейных дифференциальных уравнений, описывающих как физические явления, так и свойства линейных цепей. Линейная цепь обладает следующим свойством: выходной сигнал, порожденный суммой двух входных сигналов, равен сумме двух выходных сигналов, каждый из которых порожден входными сигналами, действующими не в совокупности, а отдельно: иначе говоря, если Вых. (А) — выходной сигнал, порожденный сигналом А, то для линейной цепи справедливо следующее равенство: Вых. (А + В) = Вых. (А) + Вых. (В). Если на входе линейной цепи действует синусоидальный сигнал, то на выходе также получим синусоидальный сигнал, но в общем случае его амплитуда и фаза будут другими. Это утверждение справедливо только для синусоидального сигнала. На практике принято оценивать поведение схемы по ее амплитудно-частотной характеристике, показывающей, как изменяется амплитуда синусоидального сигнала в зависимости от частоты. Усилитель звуковой частоты, например, имеет «плоскую» амплитудно-частотную характеристику в диапазоне от 20 Гц до 20 кГц.