Выбрать главу

Ι(t) = Re(I·ejωt) = Re(I)·cos ωt — Im(I)·sin ωt,

Например, комплексному напряжению U = 5j соответствует реальное напряжение

U(t) = Re[5j·cos ωt + 5j(j)·sin ωt] = 5sin ωt B

Реактивное сопротивление конденсаторов и индуктивностей. Принятое соглашение позволяет применять закон Ома для схем, содержащих как резисторы, так и конденсаторы, и индуктивности.

Определим реактивное сопротивление конденсатора и индуктивности. Нам известно, U(t) = Re(U0·ejωt). Так как в случае конденсатора справедливо выражение I = C(dU/dt), получим

Ι(t) = — U0·sin ωt = Re[U0·ejωt/(-j/ωC)] = Re(U0·ejωt/XC),

т. е. для конденсатора

XC = — j/ωC,

ХC — это реактивное сопротивление конденсатора на частоте ω. Конденсатор емкостью 1 мкФ, например, имеет реактивное сопротивление —2653j Ом на частоте 60 Гц и —0,16j Ом на частоте 1 МГц. Для постоянного тока реактивное сопротивление равно бесконечности. Аналогичные рассуждения для индуктивности дают следующий результат:

XL = jωL.

Схема, содержащая только конденсаторы и индуктивности, всегда обладает мнимым импедансом; это значит, что напряжение и ток всегда сдвинуты по фазе друг относительно друга на 90°- схема абсолютно реактивна. Если в схеме присутствуют резисторы, то импеданс имеет и действительную часть. Под реактивным сопротивлением подразумевается при этом только мнимая часть импеданса.

Обобщенный закон Ома. Соглашения, принятые для представления напряжений и токов, позволяют записать закон Ома в следующей простой форме:

I = U/ZU = I·Z, означающей, что напряжение U, приложенное к схеме с импедансом Z, порождает ток I. Импеданс последовательно и параллельно соединенных элементов определяется по тем же правилам, что и сопротивление последовательно и параллельно соединенных резисторов:

= Z1 + Z2 + Z3 +…

(для последовательного соединения),

И в заключение приведем формулы для определения импеданса резисторов, конденсаторов и индуктивностей:

ZR = R (резистор),

ZC = —j/ωC (конденсатор),

ZL= jωL (индуктивность).

Полученные зависимости позволяют анализировать любые схемы переменного тока с помощью методов, принятых для схем постоянного тока, а именно с помощью закона Ома и формул для последовательного и параллельного соединения элементов. Результаты, которые мы получили при анализе таких схем, как, например, делитель напряжения, сохраняют почти такой же вид. Так же как и для схем постоянного тока, для сложных разветвленных схем переменного тока справедливы законы Кирхгофа; отличие состоит в том, что вместо токов I и напряжений U здесь следует использовать их комплексные представления: сумма падений напряжения (комплексного) в замкнутом контуре равна нулю; сумма токов (комплексных), втекающих в узел, равна сумме токов (комплексных), вытекающих из него. Из последнего правила, как и в случае с цепями постоянного тока, вытекает, что ток (комплексный) в последовательной цепи всюду одинаков.

Упражнение 1.16. Используя формулы для импеданса параллельного и последовательного соединения элементов, выведите формулы (разд. 1.12) для емкости двух конденсаторов, соединенных (а) параллельно, (б) последовательно. Подсказка: допустим, что в каждом случае конденсаторы имеют емкость С1 и С2. Запишите выражение для импеданса параллельно и последовательно соединенных элементов и приравняйте его импедансу конденсатора с емкостью С. Найдите С.

Попробуем воспользоваться рекомендованным методом для анализа простейшей цепи переменного тока, которая состоит из конденсатора, к которому приложено напряжение переменного тока. После этого кратко остановимся на вопросе о мощности в реактивных схемах (это будет последний кирпич в фундаменте наших знаний) и рассмотрим простую, но очень полезную схему RC-фильтра.

Представим себе, что к силовой сети с напряжением 110 В (эффективное значение) и частотой 60 Гц подключен конденсатор емкостью 1 мкФ. Какой ток протекает при этом через конденсатор?

Воспользуемся обобщенным законом Ома: Ζ = —j/ωC. Следовательно, ток можно определить следующим образом: I = U/Z.

Фаза напряжения произвольна, допустим U = А, т. е. U(t) = A·cos ωt, где амплитуда А = 110√2 ~= 156 В, тогда I = jωCA ~= 0,059·sin ωt. Искомый ток имеет амплитуду 59 мА (эффективное значение составляет 41,5 мА) и опережает напряжение по фазе на 90°. Результат соответствует полученным ранее выводам. Отметим, что если бы нас интересовала только амплитуда тока, то можно было бы не прибегать к комплексным числам: если А = В/С, то А = В/С, где А, В, С — амплитуды комплексных чисел. То же самое справедливо и для произведения (см. упражнение 1.17). Для нашего случая

I = U/Z = ωCU.

Иногда этот прием очень полезен.

Как ни странно, конденсатор в нашем примере мощность не рассеивает. Его подключение к сети не приводит к увеличению показаний счетчика электроэнергии. Разгадку этой «тайны» вы узнаете, прочитав следующий раздел. А затем мы продолжим анализ схем, содержащих резисторы и конденсаторы, с помощью обобщенного закона Ома.

Упражнение 1.17. Докажите, что если А = ВС, то А = ВС, где А, В, С — амплитуды комплексных чисел. Подсказка: представьте каждое комплексное число в форме А = Ае.

Мощность в реактивных схемах. Мгновенное значение мощности, потребляемой любым элементом схемы, определяется произведением Ρ = UI. Однако в реактивных схемах, где напряжение U и ток I связаны между собой не простой пропорциональной зависимостью, просто перемножить их нельзя. Дело в том, что могут возникать странные явления, например, знак произведения может изменяться в течение одного периода сигнала переменного тока. Такой пример показан на рис. 1.49.

Рис. 1.49. При использовании синусоидального сигнала ток через конденсатор опережает напряжение по фазе на 90°.

На интервалах А и С на конденсатор поступает некоторая мощность (правда, скорость ее изменения переменна), и благодаря этому он заряжается: накапливаемая конденсатором энергия увеличивается (мощность — это скорость изменения энергии). На интервалах В и D потребляемая мощность имеет отрицательный знак — конденсатор разряжается. Средняя мощность за период для нашего примера равна нулю; этим свойством обладают все реактивные элементы (индуктивности, конденсаторы и всевозможные их комбинации). Если вы знакомы с интегралами от тригонометрических функций, то следующее упражнение поможет вам доказать это свойство.